Learning Objectives:
- Identify infections capable of causing mass casualties and describe their etiologies, manifestations, diagnosis, management, and prevention.
- Describe strategies and devices to prevent communication of infections to caregivers, patients, and the environment.
- Identify chemical agents capable of causing mass casualties and describe their likely sources, effects, manifestations, and management of chemically contaminated patients.
- Identify the sources of mass casualty radiation events and describe the effects, manifestations, and management of radiation injuries.
- Identify sources of blast injuries and describe the types of injuries, their manifestations, and their management.

Mass Casualty Events

Definition
- Disaster - is what happened when a woman backed into a fan

Disaster
- Definition - a sudden calamitous event bringing great damage, loss, or destruction (Merriam-Webster)
- Types:
 - Natural disasters; e.g., pandemics, hurricanes, earthquakes, etc.
 - Man-made
 - accidental; e.g., industrial explosions
 - terrorism, which intends to injure and to provoke maximum fear
Medicine in mass casualty incidents

- Conventional medicine - do the greatest good for the individual patient
- Disaster medicine - do the greatest good for the greatest number of patients

- triage of victims
- economizing resources
- reliance on available assets
- mass evacuation

Possible mass casualty scenarios

- Pandemic infections (febrile respiratory illnesses)
- Bioterrorism
- Chemical injuries
- Radiation injuries
- Natural disasters
- Explosions

Febrile Respiratory Illnesses (FRI) & Bioterrorism

Infections capable of mass casualties

- Naturally-occurring
 - influenza; e.g., swine influenza A (H1N1)
 - severe acute respiratory syndrome (SARS) - coronavirus infection
 - avian (bird) flu

Infections capable mass casualties

- bioterrorist threats
 - pulmonary anthrax
 - smallpox
 - plague
 - tularemia
 - viral hemorrhagic fever; e.g., Ebola, Marburg

Influenza

- Causative agent - viruses
- Communication routes
 - airborne
 - contact
- Manifestations
 - fever
 - headache
 - muscle pain
 - malaise
 - pneumonia - may progress to ARDS
Influenza

Diagnosis
- index of suspicion - clinical signs, multiple cases
- oral swab for viral ID
- clinical signs for mass victims

Problem - many people may be exposed before diagnosis is made
- masks for patients in ER waiting rooms??

Management
- home care, if possible & safe
- supportive care; e.g., hydration
- oxygen
- ventilation with low TV
- antiviral agents
 - amantidines
 - neuraminidase inhibitors

Prevention
- vaccination
- antiviral agents
 - amantidines
 - neuraminidase inhibitors
- airborne isolation of patients
- personal protection equipment (PPE)
 - N95 mask
 - respirator for high-risk procedures
- minimize high-risk procedures

FYI - Click for video with advice for flu management & prevention
http://www.youtube.com/watch?v=zJ6VT7ciR1o

Pulmonary anthrax

Pulmonary form likely due to bioterrorism

Causative agent - bacillus anthracis
- spore forming
- gram positive rod

Communication route
- inhalation of spores
- no person-to-person transfer

Manifestations
- 3-5 day incubation period
- fever, chills
- dyspnea, chest pain
- cough
- headache
- nausea & vomiting
- hypoxemia
- stridor
- widened mediastinum on radiograph
Pulmonary anthrax

Diagnosis
- Index of suspicion - exposure risk
 - Occupation
 - Location
- Pathognomonic (distinct signature)
 - Previously healthy adult
 - Overwhelming flu-like signs
 - Widened mediastinum

Click to see chest radiograph of pulmonary anthrax: http://www.ph.ucla.edu/epi/bioter/minafig1a.jpg

Management
- Supportive - ventilation, O2
- Antibiotics
 - Doxycycline
 - Ciprofloxin
 - Amoxicillin

Prevention
- Universal precautions for patient care - no special barriers
- Antibiotics for suspected exposure (60 D)
- Human live attenuated vaccine
 - Three injections, two weeks apart
 - Three injections at 6, 12, 18 mo.

Smallpox

Causative agents
- Variola minor virus (less virulent)
- Variola major virus

Communication route
- Inhaled droplets, aerosols
- Very contagious

Manifestations
- Incubation - 10-14 days
- Pre-eruptive phase (lasts 2-4D)
 - High fever
 - Severe headache
 - Malaise
- Eruptive phase
 - Centrifugal rash, starting on face
 - Evolves to pustular rash
Smallpox Rash

Smallpox
- Manifestations
 - toxemia
 - encephalitis
 - mortality (20-30%)- 5th or 6th day after onset of rash

Smallpox
- Diagnosis - one suspected case represents an international health emergency
 - Characteristic rash
 - centrifugal distribution
 - same stage of development at each location
 - palmar and plantar location (rare with chickenpox)
 - confirmed by laboratory analysis

Smallpox
- Management
 - strict isolation for hospitalized patients
 - home care recommended
 - supportive care
 - antibiotics for secondary bacterial infection
 - antiviral agents
 - currently, none are approved
 - agents for HIV have potential

Smallpox
- Prevention - post-exposure control
 - all face-to-face contacts with victim
 - vaccinated
 - surveillance for fever, rash
 - vaccination of healthcare workers, police, transit workers, etc.

Smallpox
- Prevention - hospital infection control
 - rooms- negative pressure with HEPA
 - vaccination of employees, patients
 - laundry and waste- biohazards
Plague

- **Causative agent**
 - *yersinia pestis*
 - gram negative rod
- **Communication route(s)**
 - bite from infected flea
 - droplets, aerosol (bioterrorism)
 - contact (person-to-person)

Plague

- **Forms**
 - bubonic (flea bites)
 - septicemic
 - pneumatic (bioterrorist aerosols)

Plague (pneumonic)

- **Manifestations (pneumonic)**
 - incubation - hours to days
 - malaise
 - high fever, chills
 - hemoptysis
 - leukocytosis
 - rapidly progressive pneumonia
 - hypoxemia
 - mortality - 100% if untreated

Plague (pneumonic)

- **Diagnosis**
 - index of suspicion- sudden outbreak of severe pneumonia & sepsis
 - Gram stain- sputum or blood, gram negative bipolar rod

FYI - click to see *yersinia pestis*
http://webs.wichita.edu/mschneegurt/biol103/lecture14/pestis_big.jpg

Plague (pneumonic)

- **Management**
 - supportive - ventilation, oxygen
 - antibiotics- initiate STAT
 - streptomycin- drug of choice
 - gentamycin
 - doxycycline

Plague (pneumonic)

- **Prevention**
 - Post-exposure antibiotics- seven days post-exposure
 - doxycycline
 - tetracycline
 - TMP-SMT (Bactrim™)
Plague (pneumonic)
- Respiratory isolation
 ◆ patient for first 48 hours
 ◆ close contacts who refuse chemoprophylaxis
- Vaccine - no longer available
- Decontamination - usual measures

Tularemia
- Causative agent
 ◆ francisella tularensis
 ◆ gram negative bacterium
 ◆ zoonotic organism (rabbit fever)
- Communication route(s)
 ◆ contact with infected animals
 ◆ vectors; e.g., ticks, flies
 ◆ inhalation (bioterrorism)
 ◆ no person-to-person transfer

Tularemia
- Manifestations (ulceroglandular form)
 ◆ cutaneous ulcer
 ◆ lymph gland enlargement
 ◆ fever, chills
 ◆ headache, malaise
 ◆ may progress to pneumonia

Tularemia
- Manifestations (bioterrorist forms)
 ◆ incubation - 2-10 days
 ◆ typhoidal form
 - fever,
 - cough,
 - chest pain
 - shortness of breath
 - mortality - 35%

Tularemia
- Manifestations (bioterrorist forms)
 ◆ pneumonic form - severe atypical pneumonia
 - ARDS ==> respiratory failure
 - mortality unknown - no opportunity for study

Tularemia
- Diagnosis
 ◆ may be missed on sputum exam
 ◆ histology - intracellular organisms
 ◆ serology
- Management
 ◆ support - ventilation, oxygen
 ◆ antibiotics
 - streptomycin - drug of choice
 - gentamycin, amikacin
 - chloramphenicol (meningitis)
Tularemia

- Prevention
 - antibiotics for suspected exposure
 - universal precautions for victims

Viral hemorrhagic fevers

- Causative agents
 - Marburg virus (Angola, 2005)
 - Ebola virus (4 species)

- Communication routes
 - contact with non-human primates
 - droplet particles
 - infected persons
 - bioterrorism

FYI - Click to see trailer of "Outbreak" movie
http://www.youtube.com/watch?v=Mj9SUJdpJS4

Viral hemorrhagic fevers

- Manifestations
 - incubation period - 4-5 D
 - fever, chills, headache
 - nausea, vomiting, diarrhea, abdominal pain

FYI - Click to download article on viral hemorrhagic fevers

Viral hemorrhagic fevers

- Manifestations (cont'd)
 - prostration, stupor, shock
 - bleeding: conjunctival, soft tissue, skin (rash), gastrointestinal, alveolar
 - mortality
 - Marburg......about 25%
 - Ebola...........50-90% (depends on strain)

Viral hemorrhagic fevers

- Diagnosis
 - history of exposure
 - clinical findings

- Management
 - strict isolation
 - supportive
 - shock
 - ventilatory failure (ARDS is likely)

- Prevention
 - strict isolation of victims, exposures
 - personal protective equipment, including airborne precautions
High-risk procedures
- endotracheal intubation
- noninvasive positive pressure ventilation
- bag-mask ventilation
- bronchoscopy

High-risk procedures
- exhaled aerosols - all nebulizers
- nonrebreathing mask without expiratory filter

Click to see video that shows exhaled aerosols (Video courtesy of Cliff Ansel, President, Thornhill Research, Toronto)

Flow of patient care

- Patient presents with FRI ==>
 ◆ Placed in droplet or airborne isolation
 ◆ Caregivers use personal protective equipment (PPE)
 ◆ Diagnosis initiated

Flow of patient care

- If the etiology is NOT an emergency critical care agent ==>
 ◆ Isolation removed or maintained, as indicated
 ◆ PPE for high-risk procedures
 ◆ Specific treatment undertaken

Flow of patient care

- If the etiology is an emergency critical care agent ==>
 ◆ Public health agencies notified
 ◆ Isolation maintained, as indicated
 ◆ PPE for all high-risk procedures

Flow of patient care

- Presence of cases associated with ARDS ==>
 ◆ Low TV ventilation
 ◆ Surge capacity plan activated with ventilator stockpile
 ◆ Aggressive PPE for caregivers
 ◆ Vaccination or antiviral therapy for caregivers
Personal protective equipment

- Level A - self-contained breathing apparatus and encapsulating chemical-protective (TECP) suit.
- Level B - self-contained breathing apparatus or supplied-air respirator and nonencapsulated chemical-resistant garments, gloves, and boots.

Click to see level A PPE

Personal protection

- Level C - air-purifying respirator and non-encapsulated chemical-resistant clothing, gloves and boots.
- Level D - universal precautions
- Level E - personal

Click for personal protective equipment requirements.
You will need to scroll down the page.
http://www.ehso.com/OSHA_PPE_EPA_Levels.htm
Click to see level E personal protective equipment

Environmental controls

- Mass infection with airborne agent will overwhelm conventional isolation capabilities
- Options:
 - cohorting patients
 - industrial exhaust fans
 - high-capacity portable HEPA units
- Masks for infected patients

Click to see Iso-O2 & Hi-Ox80 masks. At website, click 'projects, then mask names
http://www.thornhillresearch.com/

Summary & Review

- Types of disasters
- Medicine in mass casualty events
- Febrile respiratory illnesses
 - Pandemic influenza
 - Pulmonary anthrax
 - Smallpox
 - Plague
 - Tularemia
 - Viral hemorrhagic fever

Summary & Review

- High risk procedures
- Optimal flow of patient care
- Personal protective equipment
- Environmental controls

Chemical Injuries
Categories of chemical agents

- Lung damaging agents
- Blood agents
- Blistering agents
- Nerve agents

Initial management for all agents
- rescuer personal protection
- removal of victim from source
- life support interventions
- decontamination

Lung damaging agents

- **Types of events**
 - chemical warfare
 - terrorism
 - industrial accidents - most likely scenario

FYI - click for information on Montana chlorine spill
http://www.toxictrains.org/Derailments/Alberton%20Montana.htm
FYI - click for video on SC chlorine spill (3 min)
http://www.youtube.com/watch?v=OoDouOrQPAs
FYI - click for video on Bhopal disaster (11 min.)
http://www.youtube.com/watch?v=Zx-BfXlJ09c&feature=channel

Agents

- chlorine - manufacture of paper, textiles
- ammonia - manufacture of fertilizer
- methyl isocyanate (MIC) - manufacture of pesticides; e.g., Sevin (Bhopal)
- phosgene
 - WW I chemical warfare
 - manufacturing - pesticides, dyes, pharmaceuticals

Effects

- copious secretions
- cough
- stridor
- laryngeal obstruction
- bronchospasm
- noncardiogenic pulmonary edema (ARDS)
- severe ocular burning (methyl isocyanate)

Treatment

- intubation, ventilation for severe exposure
- humidified air or O2 (mild exposure)
- bronchodilators
- inhaled NaHCO3 for chlorine
- removal of contact lenses
Blood agents

Agents
- hydrogen cyanide
- cyanogen chloride

Sources
- manufacturing
- mining
- metalworking
- byproduct of combustion - fires
- chemical warfare

Pathophysiology
- block cytochrome, inhibiting cellular O2 uptake (histotoxic hypoxia)

Effects
- bitter almond smell reported by victim
- bright red venous blood
- tachypnea
- metabolic acidemia

Blood agents

Treatment
- antidotes to displace and excrete cyanide
 - amyl nitrite
 - sodium nitrite
 - sodium thiosulfate
- oxygen
- hyperventilation
- NaHCO3

Blister agents

Agents
- mustard
- lewisite
- phosgene oxime

Sources
- chemical warfare
- hot dog overdose (mustard)

Click for video on blistering agents (1)
http://www.youtube.com/watch?v=jGw0pyXROf4

Effects (mustard has delayed effects)
- skin blisters
- burning eyes
- injury to all airways
 - upper airway obstruction
 - peripheral airway obstruction
- pulmonary edema
- gastrointestinal damage - vomiting, diarrhea

Click for picture of blistering agent effects
http://www.college.ucla.edu/webproject/micro12/chemicalweapons/mustard2.jpg

Blister agents

Treatment
- there are no antidotes
- supportive
 - oxygen, intubation, ventilation
 - bronchodilators
 - medications for vomiting, diarrhea
Nerve agents

Agents - organophosphates
- GA (Tabun) - genocide
- GB (Sarin) - genocide (Japan, 1994)
- GD (Soman) - genocide
- GF
- VX
- kids
- significant other
- bosses
- employees

Nerve agents

Action - inhibit cholinesterase, which causes accumulation of acetylcholine at nerve synapses
- skeletal muscle (nicotinic) effects
 - twitching
 - weakness
 - paralysis, including diaphragm
- muscarinic effects - cholinergic crisis

Cholinergic crisis (see neuro lesson)
- Salivation
- Lacrimation
- Urination
- Diaphoresis
- GI distress (diarrhea, vomiting)
- Emesis
- Bronchospasm

Nerve agents

Treatment
- rescuer and caregiver personal protection - caregivers in Japan sickened from Sarin
- decontamination of victims
 - water
 - calcium hypochlorite
 - charcoal & absorptive resins (military)

Treatment - antidotes
- atropine - blocks nicotinic and muscarinic effects of acetylcholine (massive dosages)
- pralidoxime (2-PAM-Cl) - removes organophosphoryl molecule

Click to see video on nerve agents (1.5)
http://www.youtube.com/watch?v=ZgVKCpdzZwc
Nerve agents
- Supportive treatment
 - endotracheal intubation
 - ventilation
 - bronchodilators - albuterol & ipratropium
 - tracheal suctioning
 - benzodiazepine for seizures

Chemical agents
- Additional causes of surge of patients to institution will include frightened people who think they were exposed - it will be hard to sort them out

Summary & Review
- Chemical injuries are likely due to industrial accidents
- Lung damaging agents; e.g., chlorine
- Blood agents; e.g., cyanide
- Blistering agents; e.g., mustard
- Nerve agents; e.g., Sarin

Radiation injuries
- Causes (mass casualties)
 - accidents; e.g., nuclear reactor meltdown
 - Three Mile Island (Pa.)??
 - Chernobyl (Ukraine, 1986)
 - nuclear warfare

Radiation injuries
- Causes
 - terrorism
 - radiation dispersion device, AKA "dirty bomb"
 - non-explosive radiation dispersal; e.g, radioactive material left in public place

FYI - Click to see video about Chernobyl (3 min.)
http://www.youtube.com/watch?v=rwAJ_u3Q0Hw&feature=related
FYI - Click to see nuclear explosion (1.5)
http://www.youtube.com/watch?v=xIIIdmu92E&feature=related
Injuries with nuclear explosion
- Blast injuries - multiple types of trauma
- Thermal injuries
 - flash burns
 - flame burns
- Ionizing radiation injury

Ionizing radiation types
- alpha particles - stopped by sheet of paper
- beta particles - stopped by clothing
- gamma rays - stopped by inches of concrete or inch of lead
- x-rays - concrete or inch of lead
- neutrons - concrete or inch of lead
- cell phones - nothing stops their annoying effects

Ionizing radiation exposure
- External radiation - exposure to source
- Contamination
 - external (skin, hair) - exposure to radioactive debris (fallout), which can be transmitted to rescuers and caregivers

Ionizing radiation exposure
- External radiation - exposure to source
- Contamination
 - external (skin, hair) - exposure to radioactive debris (fallout), which can be shared with caregivers
 - internal - entry of fallout via:
 - inhalation
 - ingestion
 - open wounds ==> decreased survival

Radiation injuries
- Severe radiation ==> cell death
- Less severe radiation ==> cell injury
 - repaired ==> scarring
 - altered genetic information ==>
 - carcinoma
 - teratogenesis (birth defects)

Radiation injuries
- Severity of injury depends on dose received, which is function of:
 - exposure time
 - radiation dosage

FYI - click to see Chernobyl birth defect
http://www.flickr.com/photos/susek/3061170039/
Radiation sickness
- high dose manifestations:
 - nausea
 - vomiting
 - diarrhea
 - fatigue
 - mental status changes
 - fever
 - respiratory distress

Radiation sickness
- delayed manifestations:
 - decreased WBC, platelet production
 - severe gastrointestinal damage
 - severe CNS damage
 - teratogenesis - birth defects
 - carcinoma

Treatment
- wound closure
- medical treatment may not be indicated for first few hours
- supportive treatment
- potassium iodide (SSKI) - protects only the thyroid from radioactive iodine

Summary & Review
- Causes of mass casualty radiation injuries; e.g., meltdowns, terrorism
- Nuclear explosion injury types; e.g., radiation injury
- Radiation exposures: external; contamination
- Manifestations of radiation sickness
- Radiation sickness treatment

Sources of blast injuries
- Industrial accidents
- Natural disasters; e.g., earthquakes and natural gas lines
- Warfare
- Terrorism - blast injuries are the most common result; e.g.:
 - Mumbai, India, 2006
 - London, 2005
 - New York City, 2001
 - Oklahoma City, 1995

Explosions
Blast Injuries
Oklahoma City, Murrah Building, 1995

Categories of blast injuries
- Primary blast injuries
- Secondary blast injuries
- Tertiary blast injuries
- Quaternary blast injuries

Primary blast injuries
- Caused by high-energy explosions that produce a pressure wave
- Pressure wave can cause severe damage without overt signs of trauma
- Pressure wave primarily affects gas-filled structures:
 - abdominal hemorrhage, perforation
 - cerebral concussion
 - blast lung - bilateral lung contusion
 - tympanic membrane - red flag
FYI - click to download article on blast injuries
http://www.cdc.gov/masstrauama/preparedness/primer.pdf

Secondary blast injuries
- Caused by flying debris
- Penetrating and blunt force injuries to any body parts; e.g., open pneumothorax

Tertiary blast injuries
- Caused by victims being propelled by wind from explosion
- Most common injuries:
 - fractures and traumatic amputations
 - brain injury - open and closed

Quaternary blast injuries
- Injuries not caused by the explosion:
 - burns
 - crush injuries from structure collapse
 - exacerbations of asthma & COPD from inhalation of dust
 - angina, MI
FYI - Click to download blast injury Powerpoint. Scroll down to "Bombings - 1 hour module"
http://www.acep.org/blastinjury
Respiratory care
- Supplemental O2
- Airway management - difficult airways are likely
- Ventilation for:
 - pulmonary contusions
 - bronchopulmonary fistulae
 - massive trauma - acute lung injury
 - brain and spinal cord injuries

Summary & Review
- Sources of blast injuries - accidents, natural disasters, terrorism
- Categories of injuries
 - primary
 - secondary
 - tertiary
 - quaternary
- Management
 - airway management
 - ventilation

Natural Disasters

Types of natural disasters
- Floods - most common
- Hurricanes - wind, flooding, fires
- Tornadoes - wind
- Wild fires
- Avalanches/landslides/mudslides

Injuries from natural disasters
- Near drowning - flooding
- Suffocation - structural collapse
- Crush injuries - structural collapse
- Blunt trauma - structural collapse, winds
- Penetrating trauma - structural collapse, winds
- Thermal injuries - wildfires, blizzards
- Inhalation injuries - fires, collapses
- Psychological trauma - all disasters

Types of natural disasters
- Heat waves
- Blizzards/extreme cold
- Earthquakes - collapses, explosions
- Tsunamis
- Volcanic eruptions

FYI - Click for information on disaster death tolls

FYI - Click to see natural disaster risk map
http://www.harborinsurance.com/guides/disasterprofile.htm
FYI - Click to see video of earthquakes
http://www.youtube.com/watch?v=4Y-62Ti5_6s
Mass Casualty Critical Care Demands

Surge capacity
- Definition - Health Care system’s ability to expand quickly to meet an increased demand for medical care in the event of a large scale public health emergency (AHRQ definition)
- The same event can produce different stresses on different institutions; e.g., influx of trauma patients to non-trauma ER

Surge considerations
- Critical care capabilities are essential to limiting mortality in a mass casualty event
- Facilities may not be able to divert or evacuate casualties
- Assistance from other agencies will take time

Additional problems
- Services lost, impaired and/or overwhelmed; e.g.:
 - water
 - electricity
 - sewer
 - communications
 - fire, EMS, police agencies

Additional problems
- Transportation problems
 - impassable roads
 - loss of vehicles
 - death, injury or illness of transport personnel
- Destruction of healthcare facilities
- Impaired sanitation - increased risk for infectious diseases
- Criminal activities; e.g., looting

Components of surge capacity
- System
- Space
- Staff
- Stuff
System
- Command - incident command system (ICS) for overall management
- Control - control of facility infrastructure; e.g., building access
- Communication - internal and external communications
- Coordination - coordination of facility response with other facilities and public agencies

Space considerations
- Critical care beds are premium
- Facility must identify and plan for using alternate spaces to accommodate surge patients
- Facility should train personnel for alternate space utilization

Facility space categories
- Conventional space - available for daily operations
- Contingency space - areas in facility that can be used temporarily for patient services
- Crisis space - do not meet usual standards of care; but, sufficient for disaster situation

Space response
- Conventional space
 - economize on critical care beds, moving patients to step-down units, general care floors
 - cancel elective procedures
 - discharge patients, as possible
 - add beds to patient rooms - eliminate private rooms

Space response
- Contingency spaces that can be used for patient care
 - recovery rooms
 - surgical waiting areas
 - procedural areas; e.g., dialysis units

Space response
- Crisis spaces that can be equipped for patient care:
 - hallways
 - lobbies
 - adjacent medical offices
 - temporary structures; e.g., tents
Staff considerations
- Personnel may be unable to travel to facility, because of roads, etc.
- Personnel may be unwilling to report, due to:
 - Illness or injury from event (victims)
 - Fear of contracting illness
 - Concerns over care for family, pets
- Critical care personnel need to be enabled to focus on their primary patient care responsibilities

Staff considerations
- Facility must have plan to mobilize its personnel in response to emergency
- Facility must have plan to use ad hoc staff effectively
- Facility must have mechanism for emergency credentials and privileges for ad hoc staff

Staffing categories
- Conventional - staff within the facility who are credentialed and privileged at facility
- Contingency - staff within the facility who can assume additional duties or staff imported from other facilities
- Crisis - non-clinical staff assigned to basic patient care

Staffing response
- Conventional
 - Departmental managers assume patient care (Uh-oh!!)
 - Surgeons assess, treat ER trauma patients

Staffing response
- Contingency
 - Staff within the facility assume additional duties, under supervision
 - Staff imported from other facilities
 - Provider extenders; e.g., Project XTREME to cross train:
 - Physicians, physician assistants
 - Nurses
 - Physical therapists

FYI - Click for information on Project XTREME: http://www.ahrq.gov/prep/projxtreme/

Staffing response
- Crisis - staff likely to perform beyond their usual scope of practice
 - Non-critical care physicians assisting in critical care areas
 - Lay personnel assisting with patient hygiene and monitoring
 - Housekeeping providing bag-valve ventilation
Stuff considerations

- Hospitals and suppliers avoid surplus of materials
- Medications and supplies stockpiled by CDC for delivery
- Transportation of supplies to facility may be crippled

FYI - click for strategic national stockpile (SNS) information
http://www.bt.cdc.gov/stockpile/

Options for short-supply situation

- Prepare (stockpile) before the event
- Substitute equivalent items
- Adapt, using items that are sufficient, though not ideal
- Conserve resources; e.g., oxygen
- Reuse items after disinfection
- Reallocate items or therapy to patient with greater benefit

Stuff

- Conventional supply - maximum supplies for usual facility operations
 - critical care equipment and supplies should NEVER be in short-supply
 - example: minimal inventory of ventilator circuits ==> trouble!!
 - the inventory should ALWAYS include an excess of personal protective equipment

Stuff

- Contingency supply - conventional inventory exhausted; response examples:
 - adapt - pulse oximeters to monitor heart rate
 - substitute - transport or anesthesia ventilators for ICU ventilators
 - reuse - manual resuscitators

Stuff

- Crisis supply - overwhelming number of critical care patients
 - bag-valve ventilation
 - accept lower limits; e.g., SpO2 to conserve oxygen
 - reallocate therapeutics ==> ethical decisions
Respiratory Care Stuff

Oxygen

- **Potential sources**
 - bulk liquid oxygen system
 - cylinders
 - oxygen concentrators
 - mobile liquid oxygen systems

Bulk liquid oxygen system

- **Failure possibilities**
 - structural damage - container, pipe system
 - impaired delivery of oxygen; e.g.; roads, lack of personnel or vehicles
 - damage to gas separation plants
 - overwhelming demand for oxygen

Oxygen cylinders

- **Mass casualty applications**
 - small cylinders
 - transports
 - temporary therapy
 - built-in regulator most desirable
 - large cylinders
 - individual long-term therapy
 - back-pressure feed units
 - manifolds can create multiple-patient capabilities

 Click to see emergency oxygen manifold
 http://www.lifesavingsystemsinc.com/manif_hdcases.htm

- **Limitations**
 - facility storage capacity
 - transport difficulties

 Infectious events demand disinfection of cylinders before transport.

 Click to see another emergency oxygen manifold
 http://www.dvrescue.com/Picture%20010.jpg

Oxygen concentrators

- **Mass casualty applications - large oxygen generators**
 - refill cylinders
 - back pressure feed units for capability of 93% O2 at 50 PSIG

 Click to see Medical Oxygen Generator Skid™
Oxygen concentrators
- Mass casualty applications - large oxygen generators
 - refill cylinders
 - back pressure feed units for capability of 93% O2 at 50 PSIG
- Limitations
 - size - storage space
 - require electricity
 - expense

Click to see Oxair™ oxygen generator (scroll down)

Mobile liquid oxygen systems
- Primarily used to refill aircraft oxygen systems
- Requires less space than cylinders
- Mass casualty application - refill mobile multiple-patient system

Click to see multiple-patient LOX systems
http://www.medlox.com/hs.php
FYI - click to see video on multiple-patient LOX system
http://www.metacafe.com/watch/2621871/penn_care_mass_oxygen_distribution_system_for_mass_casualty_incident/

Oxygen conservation methods
- repair all leaking outlets - this should be an ongoing effort
- turn flowmeters off when not in use
- use minimum FIO2 and liter flows necessary
- use reservoir cannulae
- use gas-sparing ventilators
- use HME’s for humidification
- target lower SpO2

Endotracheal intubation
- Caregivers are at risk for contagions and some chemical injuries
- Emergency intubations should be avoided
- Preparation for intubation is essential
- Patient must be sedated
- Performed in negative-pressure room
- All caregivers wear PPE

Ventilator sources
- Conventional
 - on-hand intensive care ventilators
 - rental ventilators - availability?
- Contingency situation
 - transport ventilators
 - borrowed - availability?
 - NPPV devices - NOT for mass casualties
 - anesthesia ventilators
 - negative pressure ventilators - no intubation required

Ventilator sources
- Crisis situation
 - pressure-cycled ventilators??
 - single patient use ventilators??
 - bag-valve ventilators
 - National stockpile ventilator kits
 - Impact Eagle 754
 - Puritan-Bennett LP-10
 (discontinued)

Click to see Impact Univent Eagle 754 ventilator
Click to see Puritan-Bennett LP-10 ventilator
Mass casualty ventilator requirements
- Approved for adult and pediatric patients
- Capability to operate without 50 PSIG source
- Battery life ≥ 4 hours
- Constant volume delivery
- CMV mode included
- Adjustable PEEP capability (5-15 cm H2O)

Ventilators
- Intensive care ventilators
- Noninvasive positive pressure ventilators
- Transport ventilators
- Anesthesia ventilators
- Negative pressure cuirass ventilators
- Pressure-cycled, single use
- Bag-valve ventilators
- National stockpile ventilator kits

Ventilators
- Noninvasive positive pressure ventilators
 - unsuitable for contagious conditions
 - unsuitable for ARDS
 - requires inordinate staff time

Ventilators
- Transport ventilators
 - some have ICU ventilator capabilities
 - less expensive than ICU ventilators
 - some are oxygen & electrical power economical
 - likely choice as ventilator to stock for surge

Mass casualty ventilator requirements
- Separate controls for rate and TV
- Monitors for airway pressure and TV
- Alarms:
 - circuit disconnect
 - high & low airway pressure
 - loss of electrical power
 - loss of high pressure gas source
- Ease of use

FYI - click to download article on mass casualty ventilation

<table>
<thead>
<tr>
<th>Ventilators</th>
<th>Ventilators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anesthesia ventilators</td>
<td>Negative pressure cuirass ventilators</td>
</tr>
<tr>
<td>◆ some will be needed for emergency surgical procedures</td>
<td>◆ no intubation required - less risk of infection for caregivers</td>
</tr>
<tr>
<td>◆ managed by:</td>
<td>◆ some casualties require airways</td>
</tr>
<tr>
<td>◆ anesthesia personnel - availability of time?</td>
<td>◆ United Hayek MRTX™ has been tested as an option for application to patients by physicians at the scene</td>
</tr>
<tr>
<td>◆ respiratory therapists - require orientation to devices</td>
<td>◆ not available in U.S.A.</td>
</tr>
<tr>
<td>FYI - click to see video of Hayek MRTX™ in mass casualty http://www.unitedhayek.com/presentations/movies/id/3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ventilators</th>
<th>Ventilators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure-cycled, single-use ventilators</td>
<td>Bag-valve ventilators</td>
</tr>
<tr>
<td>◆ non-constant volume delivery</td>
<td>◆ short-term support</td>
</tr>
<tr>
<td>◆ no alarms</td>
<td>◆ effective ventilation without electrical power</td>
</tr>
<tr>
<td>◆ not for unattended patients</td>
<td>◆ ventilation can be provided by ancillary staff, volunteers</td>
</tr>
<tr>
<td>◆ require 50 PSIG source</td>
<td></td>
</tr>
<tr>
<td>◆ use large amounts of gas</td>
<td></td>
</tr>
<tr>
<td>FYI - Click to see manual ventilation after Katrina http://ajrccm.atsjournals.org/content/vol172/issue10/images/large/2509004f1.jpeg</td>
<td></td>
</tr>
<tr>
<td>FYI - click to download article on healthcare and Katrina http://ajrccm.atsjournals.org/cgi/reprint/172/10/1239</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ventilators</th>
<th>Organizational preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>National stockpile ventilator kits</td>
<td>Maintain stocks of devices and supplies</td>
</tr>
<tr>
<td>◆ kit includes ventilators, ventilator supplies, instructional media</td>
<td>Plan for mass casualty events</td>
</tr>
<tr>
<td>◆ airway management materials contained in 12 hour push packages</td>
<td>Rehearse mass casualty scenarios</td>
</tr>
<tr>
<td>◆ takes hours, to days for delivery</td>
<td>Prepare and train ALL personnel for mass casualty events</td>
</tr>
</tbody>
</table>

Copyright 2010 AP Jones
Individual preparation

- Gain and maintain familiarity with hospital mass casualty plan
- Familiarize with likely surge equipment and supplies; e.g.,
 - SNS ventilators
 - others acquired for mass casualty events
- Participate in planning, rehearsals and debriefings

Individual preparation

- Personal preparations
 - plan for disposition of family, pets, etc.
 - assemble and store personal kit
 - clothes, underwear
 - toiletries
 - medications
 - eyeglasses, contact lenses

Summary & Review

- Surge capacity components
 - system
 - space
 - staff
 - stuff
- Conventional, contingency, crisis modes

Summary & Review

- Respiratory care stuff
 - oxygen resources
 - ventilator resources
- Organizational preparations
- Individual preparation

END

References

References

- Daugherty EL. Health care worker protection in mass casualty respiratory failure: infection control, decontamination, and personal protective equipment. Respir Care. 2008 Feb;53(2):201-12.

References

References

http://www.dmphp.org/cgi/content/full/3/Supplement_1/S59

References