Learning Objectives
- Describe myocardial tissue electrical activity
- Trace electrical conduction through the heart.
- Identify electrode locations for common ECG leads.
- Analyze the components of a normal ECG.
- Identify common dysrhythmias on an ECG monitor.

Chemical Basis for Electrical Activity
Resting potential - cell interior negative, in relation to exterior

Electrochemical Basis For ECG
Na+, Ca++ channels open ==> influx of + ==> negative charge external cell ==>
current ==> conduction & contraction

Electrochemical Basis For ECG
Refractory period - K+ enters cell & restores action potential

Conduction Pathway
atrial and interatrial conduction tracts

SA node
AV junction
Conduction Pathway

Conduction Pathway

Pacemaker Cells

△ Automatic rates for different sites
► SA node = 60-100 / min
► AV node = 40-60 / min
► Bundle branches = 30-40 / min

Pacemakers

△ Beats that originate outside the SA node are 'ectopic'
△ Escape beats originate from alternate sites when higher ones are depressed.

ECG Waves

Depolarization of ventricles
Depolarization of atria
Repolarization of ventricles

ECG Wave Intervals

PR (0.12-0.20 sec.)
ECG Wave Intervals

- QRS (< 0.12 sec.)

ECG Leads and Waves

- Direction of depolarization
- Upward deflection of P, QRS, T

ECG Electrode Placement

- Lead 1
 + under L clavicle
 - under R clavicle

- Lead 2
 + under L pectoral
 - under R clavicle
ECG Electrode Placement

- Lead 3
 + under L pectoral
 - under L clavicle

- MCL
 + R sternum, 4th intercostal
 - under L clavicle

Rhythm Analysis

ECG Analysis Steps

- Lead
 - usually lead II or III
- Rate- five large boxes = 1.0 sec
 - six second tracing & multiply R waves by ten
 - count large squares between R waves and divide into 300
- Regularity- compare distances between QRS complexes

ECG Analysis Steps

- P wave
 - absent ==> beats are ectopic or rate is excessive
 - tall or wide ==> atrial enlargement

- PR interval
 - short (<0.12 sec) ==> Wolf-Parkinson White (WPW) syndrome
 - prolonged (>0.2 sec) ==> AV block
ECG Analysis Steps

Δ PR relationship
◆ more P than QRS =>
 ➤ AV block
 ➤ atrial flutter with block
◆ absent P wave =>
 ➤ hidden by QRS complex
 ➤ ectopic rhythm

ECG Analysis Steps

Δ QRS complex
◆ interval >0.12 =>
 ➤ bundle branch block
 ➤ ectopic beat
 ➤ electrolyte imbalance

Δ ST segment- should be flat
◆ elevation => ischemia
◆ depression => ischemia

Δ T wave- should be same direction as QRS
◆ inversion => evolving infarction
◆ tall => electrolyte imbalance

Interpret, with consideration to:
◆ medical history
◆ general clinical status
◆ electrolyte balance
◆ artifacts
◆ equipment calibration and adjustment

Dysrhythmias
Sinus Dysrhythmias
- Sinus bradycardia
 - beats originate in SA node
 - normal wave configurations
 - rate < 60/min

Sinus Dysrhythmias
- Sinus tachycardia
 - beats originate in SA node
 - normal wave configurations
 - rate > 100/min

Sinus Dysrhythmias
- Sinus dysrhythmia
 - beats originate in SA node
 - normal wave configurations
 - irregular rhythm

Atrial Dysrhythmias
- Paroxysmal atrial tachycardia (PAT)
 - ectopic atrial focus initiates beats
 - type of paroxysmal supraventricular tachycardia (PSVT)
 - sudden onset
 - spontaneous termination
 - rate > 150/min

Atrial Dysrhythmias
- Atrial flutter
 - sawtooth atrial waves
 - associated with pulmonary disease
 - promotes thrombus formation
 - atrial rate 180-300/min
 - usually four atrial waves per QRS

Atrial Dysrhythmias
- Atrial fibrillation
 - non-discernible P waves
 - promotes thrombus formation
Atrial Dysrhythmias
- Premature atrial complex (PAC)
 - normal beat inserted between other beats
 - normal waves and configurations

Junctional (Nodal) Dysrhythmias
- Junctional rhythms
 - slow rhythm - due to suppression of SA node
 - junctional tachycardia - type of PSVT

Premature junctional complexes
- beat originates in AV node
- P wave may be inverted
- P wave may appear after QRS

Ventricular Dysrhythmias
- Premature ventricular complexes (PVC)
 - beat originates in ventricle
 - P wave is absent
 - wide QRS complex
 - compensatory pause before next regular beat

Premature ventricular complexes (PVC)
- unifocal - similar configurations ==> one damaged area
- multifocal - variable configurations ==> more than one damaged area

Premature ventricular complexes (PVC)
- frequency
 - isolated
 - every third - trigeminy
 - every other - bigeminy
 - couplet = two, triplet = three
 - every - ventricular tachycardia
Ventricular Dysrhythmias

<table>
<thead>
<tr>
<th>Premature ventricular complexes (PVC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>increased frequency ==> increased risk for R on T and ventricular tachycardia (VT)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ventricular tachycardia</th>
</tr>
</thead>
<tbody>
<tr>
<td>all beats originate in ventricle</td>
</tr>
<tr>
<td>wide QRS complexes</td>
</tr>
<tr>
<td>P waves are absent</td>
</tr>
<tr>
<td>torsades des pointes- type of VT caused by hypomagnesemia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ventricular fibrillation (VF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rapid, irregular rhythm</td>
</tr>
<tr>
<td>coarse to fine complexes</td>
</tr>
</tbody>
</table>

Heart Block

<table>
<thead>
<tr>
<th>First degree block</th>
</tr>
</thead>
<tbody>
<tr>
<td>benign</td>
</tr>
<tr>
<td>PR interval > 0.20 sec.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second degree block- Mobitz type one</th>
</tr>
</thead>
<tbody>
<tr>
<td>progressive lengthening of PR, then dropped beat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blockage of conduction between atria and ventricles at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower atrial tissue</td>
</tr>
<tr>
<td>AV node</td>
</tr>
<tr>
<td>Bundle of His</td>
</tr>
<tr>
<td>Bundle branches</td>
</tr>
</tbody>
</table>
Heart Block
- **Second degree block - Mobitz type two**
 - constant PR intervals
 - beats dropped at fixed ratio
 - often occurs with bundle branch block

- **Third degree (complete) block**
 - slow ventricular rate
 - no consistent association between P wave and QRS complex
 - associated with bundle branch block

Heart Block
- **Bundle branch block**
 - slow ventricular rate
 - wide, notched QRS complex

Artificial Pacemakers
- **Pacemaker create spikes in waves**
 - atrial pacemaker
 - ventricular pacemaker
 - failure to pace

Artifact
- **Patient movement causes abnormal waves**

Review & Summary
- **ECG trace is result of electrical conduction through heart.**
- **ECG comprised of waves and intervals between waves.**
- **Sinus dysrhythmias**
 - bradycardia
 - tachycardia
 - dysrhythmia
Review & Summary

Atrial dysrhythmias
- PAT, PSVT
- atrial flutter
- atrial fibrillation
- premature atrial contractions

Junctional (nodal) dysrhythmias
- premature junctional complex
- junctional rhythms

Ventricular dysrhythmias
- premature ventricular contractions
- ventricular tachycardia
- ventricular fibrillation

Heart block
- first degree
- second degree, Mobitz I
- second degree, Mobitz II
- third degree (complete)
- bundle branch

Pacemaker beats
- atrial
- ventricular

Artifact

References

- Elstun LR. Electrocardiography and cardiac monitoring, Chap 7 in Chang DW, Elstun LR, Jones AP. The multiskilled respiratory therapist: A competency-based approach 2000: FA Davis; Phila.