Learning Objectives:
- Explain the physiology and pathophysiology of carbon dioxide exchange and acid-base balance.
- Determine the ventilatory and acid-base status from blood-gas values.

CO2 Transportation and Regulation
- Produced with H2O as product of glucose metabolism
- Excreted by ventilation

CO2 Production & Excretion
- Increased metabolism

CO2 Production & Excretion
- Increased ventilation
CO2 Transport

Mechanisms
- dissolved in plasma (PCO2 x .03)
- converted to HCO3-
 - greatest amount of CO2
 - requires carbonic anhydrase (CA) as catalyst

\[
\text{CO}_2 + \text{H}_2\text{O} \xrightarrow{\text{CA}} \text{H}_2\text{CO}_3 \xrightarrow{[\text{H}^+]} [\text{HCO}_3^-]
\]

CO2 Abnormalities

- Increased- hypoventilation
 - depressed ventilation
 - ventilatory fatigue
 - depressant drugs; e.g., anesthetics
 - neuromuscular dysfunction

- Decreased- hyperventilation
 - neurogenic hyperventilation
 - increased intracranial pressure (ICP)
 - anxiety
 - hypoxemia
 - compensation for metabolic acidemia

CO2 Transport

Mechanisms
- combined with hemoglobin
 - greatest amount of exchanged CO2
 - CO2-Hb dissociation increased by increased O2- Haldane shift

CO2 Abnormalities

- Increased- hypoventilation
 - depressed ventilation
 - ventilatory fatigue
 - depressant drugs
 - neuromuscular dysfunction
 - increased dead space ventilation
 - emphysema - loss of alveolar capillaries
 - tachypnea - decreased tidal volume
 - massive pulmonary embolism

CO2 Abnormalities

- Decreased- hyperventilation
 - neurogenic hyperventilation
 - increased intracranial pressure (ICP)
 - anxiety
 - hypoxemia
 - compensation for metabolic acidemia

CO2 Abnormalities

- Increased- hypoventilation
 - depressed ventilation
 - ventilatory fatigue
 - depressant drugs
 - neuromuscular dysfunction
 - increased dead space ventilation
 - emphysema - loss of alveolar capillaries
 - tachypnea - decreased tidal volume
 - massive pulmonary embolism
CO₂ Abnormalities
- Increased CO₂ production
 - increased metabolism
 - fever
 - shivering - recovery from hypothermia
 - seizures - may also cause hypoventilation

CO₂ Abnormalities
- Increased CO₂
 - excessive glucose intake; e.g., IV fluids
 - compensation for metabolic alkalemia

Regulators of Acid-Base Balance
- Buffers
 - first to act
 - no pH change until they are depleted
 - HCO₃⁻ is the most important one
 - Hemoglobin - second most important

Regulators of Acid-Base Balance
- Buffers
- Ventilation
- Renal function

Regulators of Acid-Base Balance
- Ventilation
 - responds almost immediately to pH change
 - excretes/retains CO₂ volatile acid
Regulators of Acid-Base Balance

Kidney
- requires time to respond
- excretes/retains HCO3- or H+
 (fixed base, acid)

Acid-Base Balance

Parameters used to interpret
- pH- normal = 7.40
- PCO2- normal = 40
- HCO3- normal = 24

Base change- also known as base excess
- defined- the quantity of base, in mEq/L required to normalize the pH, with PCO2 adjusted to 40
 - normal value = 0 (zero)
 - estimate by subtracting normal HCO3 (24) from measured HCO3
 - used to calculate dosage of bicarbonate to treat acidemia

Depends on maintaining 20:1 ratio of base:acid (Henderson-Hasselbalch equation)

\[\text{pH} = \text{pKa} + \log \left(\frac{\text{Base}}{\text{Acid}} \right) \]

FYI - click to see calculation of pH, using the H-H equation

http://www.cod.edu/people/faculty/fullerd/ProbHTMBuffer/GIFs/B-10HHCalculation.html

Respiratory acidemia

- hypoventilation- addition of volatile acid- CO2
 - acute, uncompensated
Compensated respiratory acidemia
- chronic hypoventilation
- renal retention of HCO3
- occurs over hours- days
- rarely fully compensated

Respiratory acidemia
- Management
 - increase alveolar ventilation - caution with chronic hypercapnea
 - rapid reversal is hazardous - alkalemia
 - complete reversal will delay ventilator weaning
 - if ventilation cannot be increased; e.g., for permissive hypercapnea-
 Tromethamine (THAM)

Metabolic acidemia
- Fixed acid excess OR
- Base deficiency
- pH does not change until buffers are neutralized
- Ventilation compensates immediately, unless compromised or controlled
- Associated with hyperkalemia

Metabolic acidemia
- Causes:
 - diabetes - ketones
 - renal failure
 - non-production of HCO3-
 - failure to excrete acid anions
 - hepatic failure - failure to catabolize lactic acid

Metabolic acidemia
- Causes:
 - diarrhea - HCO3- loss
 - ingestion of acid
 - congenital metabolic disease; e.g., maple syrup urine disease (MSUD)

Metabolic acidemia
- Causes:
 - tissue hypoxia- lactic acidemia
 - severe hypoxemia
 - shock; e.g., septic shock
 - nucleoside analogues (HIV meds)
 - diagnosed with serum lactate measurement

FYI - Link to article on MSUD

FYI - Link to article on lactic acidemia and nucleoside analogues
Metabolic acidemia
- Anion gap = [(Na+) - (Cl--- + HCO3)]
- Normal = [(140) - (100 + 24)] = 16
- So what?? - If the source of acidemia is unclear, the anion gap can narrow the choices.

FYI - Link to more information on anion gap

Metabolic acidemia
- Elevated anion gap acidemia causes
 - Methanol, metformin (diabetic agent)
 - Uremia
 - Diabetic ketoacidosis
 - Paraldehyde - rarely used
 - Iron, isoniazid, inhalants (abuse)
 - Lactic acid
 - Ethylene glycol, ethanol (alcoholic ketoacidosis)
 - Salicylates, solvents, starvation

Metabolic acidemia
- Non-anionic gap acidemia sources
 - Gastrointestinal HCO3- loss - diarrhea
 - renal failure - renal tubular acidosis
 - hyperalimentation
 - post-hypocapnea; e.g., normal postnatal maternal condition

FYI - click for more information on renal acidosis
http://www.anaesthesiamcq.com/AcidBaseBook/ab8_3.php

Uncompensated metabolic acidemia
- Negative base change- estimated = (19 - 24) = -5 mEq/L

Partly compensated metabolic acidemia
- full compensation is rare

Metabolic acidemia- management
- do not treat pH ≥ 7.20
- treat underlying cause
 - insulin - ketoacid
 - restore oxygenation
 - restore perfusion
 - restore hemoglobin
 - dialysis - renal failure
 - withdraw any causative agents
- buffer therapy (later)
Respiratory alkalemia
- acute, uncompensated
- hyperventilation

Metabolic alkalemia - base excess
- Causes
 - administration of HCO3
 - vomiting, nasogastric suctioning
 - diuretic therapy

FYI - Link to article on metabolic alkalemia

Respiratory alkalemia
- chronic hyperventilation - common in late pregnancy
- renal compensation - excrete HCO3
- management - treat underlying cause

Metabolic alkalemia - base excess
- causes
 - administration of HCO3
 - vomiting, nasogastric suctioning
 - diuretic therapy
- consequences
 - hypokalemia - tachydysrhythmias
 - leftward shift in HbO2 curve - aggravates hypoxia

Metabolic alkalemia
- acute, uncompensated

Metabolic alkalemia
- partly compensated
- hypoventilation to retain CO2
- results in base excess - estimated = (31 - 24) = 7
Metabolic alkalemia

- Management
 - Treat underlying cause
 - Acetazolamide (Diamox)
 - For pH = 7.48 and HCO3- = 28 mmol/l
 - Single dose - 500 mg

FYI - Link to article on acetazolamide and alkalemia
http://ccforum.com/content/10/1/R14

Arterial vs. venous samples

- Mixed venous samples
 - Superior to arterial samples in determining
 - Acid-base status, especially during resuscitation
 - Lactate levels
 - Sites
 - Pulmonary artery
 - Central veins
 - Peripheral vein - emergency

Acid-Base Balance Algorithm

<table>
<thead>
<tr>
<th>Acidemia or Alkalemia? Check pH</th>
<th>pH < 7.40 = acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary Source Check PCO2</td>
</tr>
<tr>
<td>PCO2 > 40 ==> respiratory</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acidemia or Alkalemia? Check pH</th>
<th>pH < 7.40 = acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary Source Check PCO2</td>
</tr>
<tr>
<td>PCO2 > 40 ==> respiratory</td>
<td>Compensation? Check HCO3 and PCO2</td>
</tr>
<tr>
<td>HCO3 > 24 ==> compensated</td>
<td>HCO3 = 24 ==> uncompensated</td>
</tr>
<tr>
<td>Base deficit ==> combined</td>
<td></td>
</tr>
</tbody>
</table>

Arterial vs. venous samples

- Mixed venous normal values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.36</td>
</tr>
<tr>
<td>PCO2</td>
<td>44</td>
</tr>
<tr>
<td>HCO3-</td>
<td>28</td>
</tr>
<tr>
<td>lactate</td>
<td>1 mmol/L</td>
</tr>
</tbody>
</table>
Acidemia or Alkalemia? Check pH

pH < 7.40 = acid
Primary Source Check PCO2
PCO2 < 40 ==> metabolic

Acidemia or Alkalemia? Check pH

pH > 7.40 = alkalemia
Primary Source Check PCO2
PCO2 < 40 ==> respiratory

Acidemia or Alkalemia? Check pH

pH > 7.40 = alkalemia
Primary Source Check PCO2
PCO2 < 40 ==> respiratory
Compensation? Check HCO3 and PCO2
HCO3 < 24 ==> compensated
HCO3 > 24 ==> combined

Acidemia or Alkalemia? Check pH

pH > 7.40 = alkalemia
Primary Source Check PCO2
PCO2 < 40 ==> metabolic
Compensation? Check HCO3 and PCO2
PCO2 > 40 ==> compensated
Interpretation Practice

Interpret these values: pH = 7.48, PCO2 = 32, HCO3 = 24

Acidemia or Alkalemia?
- **Check pH**
 - pH > 7.40 = alkalemia

Primary Source
- Check PCO2
 - PCO2 < 40 ==> respiratory

Compensation?
- Check HCO3 and PCO2
 - HCO3 < 24 ==> compensated

Ans.: acute (uncompensated) respiratory alkalemia

Interpret these values: pH = 7.30, PCO2 = 28, HCO3 = 19

Acidemia or Alkalemia?
- **Check pH**
 - pH < 7.40 = acid

Primary Source
- Check PCO2
 - PCO2 < 40 ==> metabolic

Compensation?
- Check PCO2
 - PCO2 < 40 ==> compensated

Ans.: Partly compensated metabolic acidemia

Interpret these values: pH = 7.36, PCO2 = 54, HCO3 = 28

Acidemia or Alkalemia?
- **Check pH**
 - pH < 7.40 = acid

Primary Source
- Check PCO2
 - PCO2 > 40 ==> respiratory

Compensation?
- Check HCO3 and PCO2
 - HCO3 < 24 ==> compensated

Ans.: Partly compensated metabolic acidemia

Interpret these values: pH = 7.48, PCO2 = 32, HCO3 = 24

Acidemia or Alkalemia?
- **Check pH**
 - pH > 7.40 = alkalemia

Primary Source
- Check PCO2
 - PCO2 < 40 ==> respiratory

Compensation?
- Check HCO3 and PCO2
 - HCO3 < 24 ==> compensated

Ans.: acute (uncompensated) respiratory alkalemia
Acidemia or Alkalemia?
Check pH

- pH < 7.40 = acid
- PCO2 > 40 ==> respiratory
- HCO3 > 24 ==> compensated

Primary Source
Check PCO2 Compensation?
Check HCO3 and PCO2

Ans.: Compensated respiratory acidemia

Buffer Therapy

- Purpose - to reverse acid-base imbalance, usually acidemia
- NaHCO3 - action - provides HCO3- ==> [H+1 + [HCO3-] ==> H20 + C02 ==> depends on ventilation to excrete C02

NaHCO3 - complications
- Respiratory acidemia if C02 not excreted
- Metabolic alkalemia (overdose)
- Hypernatremia
- Cerebral edema

NaHCO3 - contraindications
- pH > 7.20
- severe hypernatremia

NaHCO3
- administration titrated with blood pH
- Formula for dosage

\[\text{HCO}_3^- \text{(mEq)} = \text{kg} \times (15 - \text{observed HCO}_3^-) \times 0.5 \]
Carbicarb
- Mixture of NaHCO3 and NaCO3
- Buffers without net generation of CO2
- No human trials have been conducted

Buffer therapy
- Tris-hydroxymethyl aminomethane-
 Tromethamine (THAM) - reverses acidemia without excretion of CO2
 - Action- organic proton acceptor (eats H+)

Buffer
- THAM™
 - Indications
 - metabolic acidemia with hypernatremia
 - acidemia in conjunction with limitations in ventilation-
 permissive hypercapnia

Buffer
- THAM™
 - Complications
 - apnea
 - hypoglycemia
 - hypokalemia
 - alkalemia
 - tissue necrosis from infiltration

Buffer
- THAM™
 - Dosage- ml’s of THAM of 0.3M solution = body wt in kg X base deficit in MEq/l

Buffer
- Trometamol (Tribonat™)
 - Currently used in Europe
 - Ingredients
 - NaHCO3
 - THAM
 - acetate
 - PO4

FYI - click to download article on lactic acidemia management (includes carbicarb)
http://jasn.asnjournals.org/cgi/reprint/12/suppl_1/S15

FYI - Link to article on THAM and permissive hypercapnea
http://ccforum.com/content/pdf/cc2918.pdf
Buffer

- Tribonat - advantages
 - minimal effect on PCO2
 - minimal overcorrection risk
 - less Na than NaHCO3
 - no tissue irritability

O2-induced hypercapnia

- COPD patients who are CO2 retainers
- During exacerbations
- Underlying causes:
 - VQ mismatch - increased VDA
 - Haldane effect - increased release of CO2 from Hb
- Maintain SPO2 < 92%

Summary & Review

- CO2 transport and balance
 - balance - production vs. excretion
 - transport forms and mechanisms
 - causes of abnormal PCO2

Summary & Review

- Acid-base balance
 - regulators
 - parameters and normal values
 - abnormalities
 - values
 - causes
 - management
 - acid-base algorithm

Summary & Review

- Buffer therapy
 - NaHCO3 - metabolic acidemia
 - Carbicarb
 - THAM - metabolic and respiratory acidemia
 - Trometamol (Tribonat (TM))
 - best of both
 - not available in USA

END
REFERENCES

REFERENCES