Learning Objective:
◆ Explain the current status of research on the actions, effects, indications and contraindications for bronchodilating agents, mucokinetic agents and anti-inflammatory agents.

Bronchodilator Agents

Beta-Agonists
◆ Short-acting
 ▶ racemic albuterol
 ▶ levalbuterol
◆ Long-acting
 ▶ salmeterol
 ▶ formoterol
 ▶ arformoterol (Brovana)

Beta-agonist bronchodilators
◆ Action- stimulate intracellular adenylate cyclase to increase levels of 3,5 cAMP

Adrenergic autonomic control
◆ Adrenergic receptors
 ◆ alpha, in vascular walls- vasoconstriction
 ◆ Beta1, in myocardium- cardiotonic effects
 ◆ Beta2, in vascular and bronchiolar smooth muscle- dilation
Activation of Beta2 receptors
- Catecholamine binds to receptor
- G protein in cell membrane activates adenylate cyclase

Short-acting beta-agonists
- Therapeutic effects:
 - Bronchodilation
 - Vasodilation
 - Stabilizes mast cells
 - Increase mucous secretion
 - Increase ciliary activity
 - Inhibits bronchial edema

Short-acting beta-agonists
- Indications
 - asthma- as a rescue medication
 - COPD - reduces hyperinflation
 - cystic fibrosis- regardless of PFT responsiveness
 - pulmonary edema??- may reduce edema by clearing lung water
 - ARDS/ALI??- no benefits
Short-acting beta-agonists

Indications
- severe hyperkalemia - moves K+ into cells (dosage = 10 mg)
- inhalational injury; e.g., smoke inhalation
- anaphylaxis

FYI - Link to abstract on albuterol and hyperkalemia (free registration required)

Adverse effects:
- Skeletal muscle tremor - most common
- Tachyphylaxis (tolerance)
- Tachycardia, palpitation - B1 effects

- Sudden death
- Overusage ==> tachyphylaxis?
- Propellant??
- Hypoxemia, due to dilation of pulmonary vasculature increasing V/Q mismatch

- Hypokalemia - sometimes given to correct hyperkalemia for renal patients
- Hyperglycemia

Agents
- terbutaline
- albuterol (racemic)
- levalbuterol (Xopenex) - R isomer of albuterol

Bad Guy
Short-acting beta-agonists
◆ levalbuterol
 ➤ R isomer is therapeutically active
 ➤ S isomer likely to produce adverse effects
 ==> levalbuterol is more potent as it has reduced adverse effects, such as tolerance
 ➤ levalbuterol is more expensive
 ➤ cost-effective if ordered appropriately

Short-acting beta-agonists
◆ levalbuterol
 ➤ indications
 ➤ replace albuterol in event of adverse effects
 ➤ emergency care for asthma

Short-acting beta-agonists
◆ cost per dose (SVN)
 ➤ racemic albuterol (generic)- .75/dose
 ➤ levalbuterol- 3.50/dose
◆ cost per dose (MDI)
 ➤ racemic albuterol (generic)- .09/puff
 ➤ levalbuterol- .29/puff

Long-acting beta-agonists
◆ Action: same as short-acting; but, binds with B2 receptor repeatedly
◆ Indications: maintenance therapy for:
 ➤ moderate-to-severe persistent asthma
 ➤ moderate-to-severe persistent COPD

Long-acting beta-agonists
◆ Controversy: may increase risk of death from asthma
 ➤ desensitization of beta2 receptors
 ➤ decreased effective numbers of beta2 receptors
 ➤ bronchiolar hyperreactivity

Long-acting beta-agonists
◆ Agents
 ➤ Salmeterol (Serevent)
 ➤ effective for asthma, COPD
 ➤ Formoterol (Foradil)
 ➤ shorter onset than salmeterol
 ➤ more cost-effective
Long-acting beta-agonists

- **Agents**
 - Arformoterol (Brovana)
 - recently approved and released for COPD
 - R isomer (like Xopenex)
 - shorter onset
 - nebulizer solution
 - may not mix with other medications

- **Agents**
 - Indacaterol (Arcapta Neohaler) - 24 H duration
 - FDA approval July 2011
 - Better outcomes than tiotropium for COPD?
 - Agent on the horizon
 - Carmoterol- 30 H duration

Anticholinergics

- **Actions**
 - Block acetylcholine receptor sites
 - Inhibit guanylate cyclase, so reduce intracellular 3,5 cyclic GMP

- **Therapeutic effects**
 - Relax bronchial muscle in large airways- effective for COPD

- **Adverse effects**
 - drying of mouth, pulmonary secretions- atropine
 - tachycardia- atropine
 - anisocoria- severe eye damage
 - allergy to MDI

Activation of M3 receptors

- Guanylyl cyclase catalyzes formation of 3,5 cyclic GMP (cGMP) $$\Rightarrow$$ contraction

Anticholinergics

- **Adverse effects**
 - cardiovascular events - greater than six months on drug
 - myocardial infarction
 - stroke
 - cardiovascular death

Anticholinergics
◆ Indications
 ► COPD - maintenance and exacerbations
 ► asthma
 ► exacerbations
 ► requires multiple doses

Anticholinergics
◆ ipratropium bromide (Atrovent)
 ◆ oxitropium bromide (Oxivent)
 ► not available in US
 ► duration 8-12 H - has been questioned

Anticholinergics
◆ tiotropium bromide (Spiriva)
 ► dry powder inhaler
 ► duration 24-36 H
 ► effective for COPD
 ► increased FEV1
 ► slower decline in FEV1
 ► increased exercise capacity
 ► reduced exacerbations

Combination Bronchodilators
◆ Combination of albuterol and ipratropium indicated for:
 ► COPD
 ► ER management of asthma
◆ Available as Combivent, Duvoent

Bronchodilators and Mechanical Ventilation
◆ Administration to patients without obstructive disease:
 ► longer duration of ventilation (+5D)
 ► no difference in mortality, pneumonia
 ► greater cost ($450/patient)

Duarte AG. Inhaled bronchodilator administration during mechanical ventilation. Respir Care 2004;49(6):632-634.
Anti-inflammatory Agents

Corticosteroids
- **Actions**
 - Increase number & responsiveness of beta-adrenergic receptors
 - Stabilize mast cell lysosomes
 - Decrease:
 - IgE synthesis
 - histamine synthesis
 - eicosanoid synthesis

Corticosteroids
- **Therapeutic effects for asthma**
 - potentiate beta-agonists
 - reduce edema
 - prevent inflammation and resultant irreversible airway remodeling

Corticosteroids
- **Effects for COPD**
 - fewer exacerbations
 - early use improves lung function and quality of life
 - withdrawal leads to lung function deterioration
 - continued smoking may impair therapy

Corticosteroids
- **Adverse systemic effects- reduced by aerosol route (short list)**
 - Hypokalemic alkalemia
 - Diabetes mellitus
 - Cushingoid fat distribution
 - moon face
 - buffalo hump

Corticosteroids
- **Adverse systemic effects- reduced by aerosol route (short list)**
 - Hypokalemic alkalemia
 - Diabetes mellitus
 - Cushingoid fat distribution
 - Amenorrhea
 - Growth failure
 - Osteoporosis
 - Hirsutism (hairiness)
Corticosteroids

Adverse effects for aerosol route

- oral thrush
 - reduced by spacer
 - reduced by mouth rinsing
- decreased bone density (dose related)
- increased risk of fractures (boys)
- skin bruising

Exhaled nitric oxide (FENO) measurement

- marker for airway inflammation
- used to adjust dosage of corticosteroids
- currently considered not medically necessary, so no payment

FYI - Link to article on FENO and asthma
http://content.nejm.org/cgi/reprint/352/21/2163.pdf

Agents

- prednisone- oral, systemic-
 - indicated for acute, severe asthma
- dexamethasone (Decadron)
- methylprednisolone (Solu Medrol)
- hydrocortisone

- beclomethasone (Vanceril, Beclovent)
- flunisolide (Aerobid)
- fluticasone (Flovent)
- triamcinolone (Azmacort)
- budesonide (Pulmicort)
- mometasone (Asmanex)

Combination agents

- fluticasone and salmeterol (Advair)
- formoterol and budesonide (Symbicort)
- formoterol and mometasone (Dulera)
- no differences in effectiveness or tolerability for asthmatic patients*

Leukotriene Modifiers
◆ Actions
 ► inhibit leukotriene (formerly SRS-a) production OR
 ► prevent binding of leukotrienes to receptor sites

Leukotriene Modifiers
◆ Effects
 ► prevent inflammation & airway remodeling
 ► permit elimination or reduction in systemic steroids
 ► decreases exacerbations when used with inhaled steroids

Leukotriene Modifiers
◆ Agents- all administered orally
 ► montelukast (Singulair)
 ► zafirlukast (Accolate)
 ► zileuton (Zyflo)- may cause liver failure

Mucokinetist Agents

Aerosolized Mucolytic Therapy
◆ Research demonstrates improvement in CF with aerosolized combined DNA-ase (Pulmozyme)

Mucolytic Therapy
◆ oral n-acetylcysteine (COPD):
 ► may improve pulmonary function
 ► may reduce risk of hospitalization
 ► effects may be due to antioxidant activity
Oral Mucolytic Therapy
◆ there is no evidence to support nebulized n-acetylcysteine for mucokinesis
◆ acetylcysteine aerosol may damage lung epithelium

Oral Mucolytic Therapy
◆ there is no evidence to support nebulized n-acetylcysteine for mucokinesis
◆ acetylcysteine aerosol may damage lung epithelia
◆ for patients with chronic bronchitis or COPD, oral mucolytics reduce:
 ► exacerbations
 ► days of illness
 ► days of antibiotic use

Oral Mucolytic Therapy
◆ there is no evidence to support nebulized NaHCO3 for mucokinesis
◆ NaHCO3 aerosol irritates bronchial epithelia

Rubin BK. Mucolytics, expectorants and mucokinetic preparations. Respir Care 2007;52(7):859-865.

Miscellaneous Agents

Magnesium Sulfate (MgSO4)
◆ Actions:
 ► inhibits acetylcholine release
 ► inhibits histamine release
◆ Effects (IV MgSO4):
 ► reduces the rate of hospital admissions
 ► improves pulmonary function in patients with severe acute asthma

FYI - click to see article on MgSO4 and asthma
http://www.med.umich.edu/pediatrics/ebm/cats/magnesium.htm

Magnesium Sulfate
◆ Not recommended for routine use.
◆ Dose- 25 mg/kg, up to 2.0 g
Lidocaine
◆ Actions
 ► inhibits nociceptor (cough, pain) response - component of acute asthma
 ► inhibits eosinophil activation

FYI - click to see article on nebulized lidocaine and asthma
http://download.journals.elsevierhealth.com/pdfs/journals/0091-6749/PIIS0091674904010711.pdf

Lidocaine
◆ Effects
 ► reduces steroid requirement
 ► potentiates beta2 agonists
 ► antitussive
◆ Administration - 2.5 mL 2-4% by nebulizer

Aerosols for Dyspnea
◆ aerosol opioids do not reduce dyspnea or improve exercise tolerance.
◆ aerosol furosemide may reduce dyspnea in COPD and lung cancer

FYI - Click to download article on furosemide for dyspnea
FYI - click for website about history of inhalation devices, with pictures
http://inhalatorium.com/page2.html

Review & Summary
◆ Short-acting beta agonists
 ◆ actions - stimulate 3,5 cAMP
 ◆ therapeutic effects
 ◆ adverse effects
 ◆ indications
 ◆ specific agents

Review & Summary
◆ Long-acting beta agonists
 ◆ indications
 ◆ controversy - sudden death in asthma
 ◆ specific agents

Review & Summary
◆ Anticholinergics
 ◆ action - inhibit acetylcholine
 ◆ effects - dilate larger airways
 ◆ adverse effects
 ◆ indications
 ◆ agents
Review & Summary

- Bronchodilators and ventilation
 - use in patients without obstruction - costly
 - administration by nebulizer - should avoid

- Corticosteroids
 - actions
 - effects - potentiate beta agonists and reduce inflammation
 - adverse effects - many systemic effects
 - indications - asthma, COPD
 - specific agents

- Leukotriene modifiers
 - actions
 - effects - prevent inflammation
 - indication - asthma
 - agents - oral administration

- Mucokinetic agents
 - Pulmozyme for CF is only aerosolized mucolytic with any evidence of effectiveness
 - Oral n-acetylcysteine improves COPD

- Magnesium sulfate
 - indication - status asthmaticus
 - administered by aerosol or IV

- Lidocaine
 - antitussive
 - administer by aerosol or IV

- Furosemide (Lasix)
 - reduces dyspnea
 - opioids do not work

References

- Ghee-Chee P. Inhaled corticosteroids in obstructive airway disease. Respir Care 2007;52(7):852-858.
- Rubin BK. Mucolytics, expectorants and mucokinetic preparations. Respir Care 2007;52(7):859-865.
References

Verkindre C; Bart F; Aguilaniu B; Fortin F; Guerin J-C; Le Merre C; Iacono P, and Huchon G. The effect of tiotropium on hyperinflation and exercise capacity in chronic obstructive pulmonary disease. Respiration. 2006; 73(4):420-427.

Duarte AG. Inhaled bronchodilator administration during mechanical ventilation. Respir Care 2004;49(6):6323-634.

