Acute Respiratory Distress Syndrome
Acute Lung Injury
Arthur Jones EdD, RRT

http://rc-edconsultant.com/

Learning Objective
✓ Explain the etiologies, manifestations, diagnostic techniques and current management strategies for acute respiratory distress syndrome and acute lung injury.

Definitions & Etiologies

Acute lung injury/ARDS
✓ ALI/ARDS is a syndrome that is response to injury and not a disease.
✓ There is much variability in pathology and pathophysiology.
✓ Acute Lung Injury (ALI)
 ◆ hypoxemic respiratory failure
 ◆ severe version- Acute Respiratory Distress Syndrome (ARDS).

Characteristics:
✓ Bilateral pulmonary infiltrates on chest x-ray
✓ Pulmonary Capillary Wedge Pressure <18 mm Hg
✓ PaO2/FiO2 <300 = ALI
✓ PaO2/FiO2 <200 = ARDS

Characteristics:
✓ surfactant deficiency
✓ decreased lung compliance
✓ decreased lung volume
Synonyms (history):
- Da Nang lung - Viet Nam
- shock lung
- non-cardiogenic pulmonary edema
- leaky capillary syndrome
- acute lung injury
- diffuse alveolar damage

Etiologic mechanisms
- direct lung injury (pulmonary)
 - inhalation injury
 - pneumonia
 - aspiration
- indirect lung injury (extrapulmonary)
 - shock
 - sepsis
 - transfusion related injury
 - pancreatitis

Predisposing Conditions
- trauma, shock
- aspiration
- oxygen toxicity
- toxic fumes
- sepsis

Predisposing Conditions
- narcotic overdose
- pancreatitis
- fat embolism
- near drowning
- transfusion- transfusion-associated lung injury (TRALI)
- eclampsia/pre-eclampsia
- amniotic embolism

Pathophysiology

ARDS Pathophysiology
- Initial insult
 - directly to lung
 - indirectly, via system
- Pathology stages
 - exudative (4-7D after onset)
 - proliferative (1-3 wks.)
 - recuperative or fibrotic (3-4 wks)

FYI - Link to article on ALI/ARDS
http://www.aafp.org/afp/20030115/315.html
Exudative Stage

- Injury to:
 - vascular endothelium or
 - alveolar epithelium

- Leaky capillaries allow influx of proteinaceous fluid (edema)

- Alveolar macrophages release cytokines

- Cytokines attract neutrophils, that release:
 - tumor necrosis factor (TNF-a)
 - free oxygen radicals

- Inflammation

- Cell death - type I pneumocytes

Proliferative Stage

- Alveoli filled with:
 - cellular debris
 - oxidants
 - fibrin
Proliferative Stage
- Surfactant depleted/inactivated
- Hyaline membrane formation

Resolution or Fibrosis
- Phagocytosis of debris or
- Collagen deposition - fibrosis with lung like a liver

Click to see gross pathology of fibrosis following ALI/ARDS
http://library.med.utah.edu/WebPath/LUNGHML/LUNG096.html

Manifestations & Complications

Manifestations

- There is variability in ARDS
 - Pulmonary, vs. extrapulmonary etiology
 - Consolidation vs. edema
 - Post-traumatic vs. non-traumatic

- Variability will affect:
 - Duration of illness
 - Response to ventilation strategies; e.g., PEEP, recruitment maneuvers (RM), pronation
 - Prognosis

- Onset - hours to days after initial insult
- Physical signs
 - Tachypnea
 - Retractions; e.g., supraclavicular
 - Abdominal paradox - diaphragmatic fatigue
 - Crackles, rhonchi, bronchial sounds
- Progressive, refractory hypoxemia
- Decreased lung compliance (C_L)
Manifestations

- **CXR**
 - Decreased lung volumes
 - Fluffy alveolar infiltrates
 - Air bronchograms
 - Hyaline membrane

- **CXR - ALI/ARDS**
 - Click to see images of ARDS following pulmonary contusion
 http://www.trauma.org/archive/thoracic/CHESTcontusion.html
 - Click to see images of transfusion associated lung injury
 http://www.cmaj.ca/cgi/content/figsonly/177/2/149
 - Click to see images of acute lung injury with air bronchograms
 http://www.ccmtutorials.com/rs/ali/01_ali.htm

Complications

- Ventilator-induced lung injury
 - ALI/ARDS is non-uniform
 - Posterior lungs edematous, collapsed
 - Normal lung units are subject to:
 - Overdistension
 - Loss of perfusion

- Ventilator-associated pneumonia - prolonged intubation
- Multiple organ system failure - release of mediators from lung
- Hemodynamic compromise (shock)
- Sepsis
- Pulmonary fibrosis

Prognosis

- Mortality - about 40%
- Prognosis better for trauma victims
 - Younger
 - Less comorbidity
- Severity correlates with duration of precipitating injury, not type of injury

- 66% survivors have lung dysfunction
- Psychiatric illness - depression
- Cognitive impairment
Diagnosis

Differential diagnosis
- cardiogenic pulmonary edema
- inhalation injury
- aspiration
- pneumonia (many types)
- hypersensitivity pneumonitis
- drug toxicity; e.g., amiodarone
- alveolar hemorrhage
- severe acute respiratory distress syndrome (SARS) - coronavirus

ARDS vs. cardiogenic pulmonary edema
- ARDS - PAOP (PCWP) < 18 mm Hg
- ARDS - alveolar exudate (proteins)
- Cardiogenic - cardiomegaly
- Brain natriuretic peptide (BNP) does not accurately differentiate

FYI - Link to study on BNP for differentiation of ARDS from cardiogenic pulmonary edema
http://ccforum.com/content/12/1/R3

Diagnostic Studies
- CT scan
 - determine anteroposterior distribution of consolidation
 - may predict effectiveness of pronation

FYI - Link to article on CT scanning and ARDS
http://ajrccm.atsjournals.org/cgi/content/full/164/9/1701

Diagnostic Studies
- Bronchoalveolar lavage
 - distinguish between transudate and exudate
 - identify or R/O infection
 - identify inflammatory cells
 - identify inflammatory mediators
Diagnostic Studies

- Open lung biopsy
 - identify pathologic process
 - identify etiology

FYI - Link to article on open lung biopsy in ARDS

Management

General strategies

- Treat underlying cause, if possible
- Conservative fluid management improves outcomes
- Pulmonary artery catheter monitoring
 - no improvement in outcomes
 - more complications

FYI - Link to study FACTT study synopsis (Requires free Medscape registration)

Ventilation Strategies

- Lung protective strategies
 - open lung technique
 - pressure control with volume guarantee (my recommendation)
 - optimal PEEP
 - TV < 7mL/kg IBW
 - recruitment maneuvers (RM)

FYI - Link to predicted body weight chart
http://www.ardsnet.org/system/files/pbwtables_2005-02-02_0.pdf

Ventilation Strategies

- effectiveness of PEEP and RM
 - contingent upon potentially recruitable alveoli
 - fluid-filled alveoli are not recruitable

Ventilation Strategies

- Pressure-controlled inverse ratio ventilation
 - effective
 - pressure control with volume guarantee and inverse ratio ventilation may be effective
Ventilation Strategies

- **Airway pressure release ventilation**
 - effective in selected patients
 - less likely to impair hemodynamics

FYI - Link to article on APRV and cardiac performance
http://ccforum.com/content/5/4/221

- **Permissive hypercapnea**
 - allows non-advancement of settings
 - may reduce inflammation
 - may reduce mortality
 - acidemia can be managed with Tromethamine (THAM)

Ventilation Strategies

- **Pronation**
 - transient improvements in oxygenation
 - many studies found no changes in mortality
 - Mancebo et al- reduced mortality, if applied for 17H/d
 - CT may determine those who will benefit

FYI - click for abstract of study of prolonged pronation (2013)

- **High frequency oscillatory ventilation**
 - as good as conventional ventilation
 - no improvement in mortality

Non-ventilatory therapeutics

- **Surfactant instillation (children)**
 - decreased mortality
 - decreased duration of ventilation

- **Surfactant instillation (adults)**
 - no effects on mortality
 - quantity of surfactant for adults- expensive

- **Surfactant aerosol- Aerosurf™ under study**
Non-ventilatory therapeutics

Nitric oxide
- dilates vessels in ventilated alveoli
- short-term improvement in oxygenation
- no effects on mortality
- very expensive
- off-label use - no payment

Aerosolized prostacyclin (Flolan)
- same effects as NO
- less costly than NO

Partial liquid ventilation

Lungs filled to FRC with perflubron (LiquiVent), with these properties:
- high density - flows to dependent areas of lung
- low surface tension - increases compliance
- high solubility for O2 and CO2 - transports gases
- high volatility - quickly excreted

Aerosolized prostacyclin (Flolan)
- same effects as NO
- less costly than NO

Partial liquid ventilation

Physiologic effects:
- increased lung compliance, due to:
 - decreased surface tension
 - alveolar recruitment
- decreased VILI due to increased compliance
- decreased shunt due to alveolar recruitment & diffusion across perflubron

Partial liquid ventilation

Potential applications:
- RDS - neonates
- meconium aspiration - not effective for adults
- alveolar proteinosis (1 case)
- ALI/ARDS

Partial liquid ventilation

Procedure
- perflubron instilled to FRC
- re-instillation required, due to evaporation

Partial liquid ventilation

Research findings
- neonates - non-responders to surfactant survived (n = 10)
- adults - most recent trial (2006) found negative for PLV
- earlier trials did not compare PLV with lung protective ventilation

FYI - Click to download article on PLV for neonates with RDS
http://content.nejm.org/cgi/content/full/335/11/761
FYI - Click to download article on PLV for adults with ARDS
http://ajrccm.atsjournals.org/cgi/reprint/173/8/882
Partial liquid ventilation

- **Barriers to adoption**
 - expense
 - perfluorobron
 - time - dosing, re-dosing
 - lack of positive research findings
- **Opinion** - PLV will not become a widely-used technique, at least for adults

Non-ventilatory therapeutics

- **Corticosteroids**
 - many investigations (since 1970s)
 - no benefits
 - if started late, may increase mortality

- **Enteral EPA + GLA + antioxidants**
 - increased lung compliance
 - decreased duration of ventilation
 - no effects on mortality

- **n-acetylcysteine (Mucomyst)**
 - intravenous infusion
 - antioxidant properties
 - more research needed

- **Albuterol aerosol**
 - increases C_{DYN} ==> decreased ventilation pressure
 - decreases lung edema
 - anti-inflammatory action - decrease TNF-α
 - randomized trial (2011) found no benefit
 - multi-center trial (2012) found that IV albuterol increased mortality

Summary & Review

- **Definitions - ALI/ARDS**
- **Etiologies**
- **Characteristics**
 - infiltrates
 - stiff lungs
 - refractory hypoxemia
 - PCWP <18 mm Hg
Summary & Review

Pathophysiology
- insult
- capillary permeability - edema
- inflammation
- alveolar injury
- surfactant depletion
- fibrosis/resolution

Manifestations
- refractory hypoxemia
- increased WOB
- CXR - consolidation, air bronchograms

Complications
- sepsis
- ventilator-induced lung injury
- ventilator-associated pneumonia

Diagnosis
- differential diagnosis - many conditions
- chest radiograph
- bronchoscopy
- open lung biopsy

Management
- treat underlying cause
- supportive measures
- lung protective strategies
- non-ventilatory measures

References
References

References

