Learning Objectives:
- Identify common etiologies and risk factors for congenital heart defects.
- Describe clinical manifestations and diagnostic methods for congenital heart defects.
- Explain the pathophysiology, manifestations, diagnosis and management of acyanotic congenital cardiac anomalies.
- Explain the pathophysiology, manifestations, diagnosis and management of obstructive congenital anomalies.
- Explain the pathophysiology, manifestations, diagnosis and management of cyanotic congenital anomalies.
- Explain the implications of cardiac anomalies for respiratory care.

Development of the Cardiovascular System

Development of the heart
- Parallel tubes convolute to form chambers
- Septa and valves form from endocardial cushion

Fetal circulation- anatomy
- Includes placental circulation- low resistance circuit
- Foramen ovale-- window between atria
- Ductus arteriosus-- vessel connecting aorta to pulmonary artery
- Ductus venosus- bypasses liver
Fetal circulation- anatomy

- foramen ovale
- ductus venosus
- ductus arteriosus
- pre-ductal flow
- placenta

Click to see a diagram of fetal circulation

Fetal circulation- physiology

- High pulmonary vascular resistance
- Left side includes low resistance placental circuit
- Venous admixture at all shunts
- Pre-ductal blood with highest PaO2 to upper body

Changes at Birth

- Removal of placental circuit increases left-sided resistance
- Increased PaO2 lowers pulmonary vascular resistance
- Foramen ovale functionally closed- resistance on left > right
- Ductus closes due to increased PaO2, etc., about 15 hours postpartum

Congenital Heart Disease

Etiologic Factors

- maternal infections- rubella, syphilis
- maternal metabolic dx- diabetes
- maternal drug ingestion
 - phenytoin (Dilantin)
 - thalidomide
 - sex hormones

Medical history

- failure to thrive
- retarded growth, development
- decreased exercise tolerance
- squatting
- fainting
Medical history
- chronic pulmonary infections
- chronic cough
- feeding difficulties
- headaches
- epistaxis (nosebleeds)
- 'noisy breathing'

Physical examination
- small stature, underdeveloped
- color- may be cyanotic
- clubbing

Physical examination
- color- may be cyanotic
- clubbing
- heart murmurs- abnormal
 ◆ blood flow
 ◆ valve activity

Click for information on the physiology of heart murmurs
http://www.wilkes.med.ucla.edu/Physiology.htm

Physical examination
- cyanosis
- clubbing
- heart murmurs
- displaced point of maximal impulse (PMI)
- precordial bulge

Physical examination
- wheezing- CHD often mistaken for asthma
- tachypnea
- tachycardia

Physical examination
- wheezing- CHD often mistaken for asthma
- tachypnea
- tachycardia
- blood pressure greater in arms
- weak femoral pulses
- epistaxis
Diagnosis

- Radiography
 - chest radiograph
 - angiography
- Echocardiography - replaced catheterization for many defects

Click for information on echocardiography and CHD
http://www.echoincontext.com/advanced/chd_01.asp

Diagnosis

- Electrocardiography
- Blood gases and/or oximetry
 - pre, post-ductal SO2
 - SO2 in various compartments
- Cardiac catheterization
 - diagnostic
 - therapeutic

FYI - Click for article on diagnostic cardiac catheterization and CHD
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC479386/

Categories

- Acyanotic CHD
- Obstructive defects
- Conduction defects
- Cyanotic CHD
- Miscellaneous
 - Dextrocardia
 - Vascular rings

Acyanotic Cardiac Anomalies

Acyanotic Anomaly Types

- Persistent fetal structures
 - patent ductus arteriosus
 - patent foramen ovale
- Septal defects
 - ventricular septal defects
 - atrial septal defects
 - endocardial cushion defects

Acyanotic Anomaly Types

- Obstructive defects
 - coarctation of aorta
 - aortic stenosis
 - Conduction defects
Persistent Fetal Structures

Types
- patent ductus arteriosus
- patent foramen ovale

May persist asymptomatically, through adulthood.
- exacerbated by pulmonary hypertension (hypoxemia)
- shunt may change to right-to-left with PEEP, worsening hypoxemia

Persistent Fetal Structures

Normal pulmonary vascular resistance
- left-to-right shunt
 - no effect on arterial blood gases
 - elevated mixed venous PO2
 - increased LV work
 - LV failure
 - CHF

Persistent Fetal Structures

Increased pulmonary vascular resistance
- right-to-left shunt
- hypoxemia, refractory to supplemental O2

Click to see persistent fetal circulation
http://www.kumc.edu/Institution/medicine/pedcard/cardiology/pedcardio/pfcdiagram.gif

Patent Ductus Arteriosus

Second most common anomaly in term infants

Etiologic factors
- neonatal asphyxia, hypoxemia
- maternal viral infections, e.g., rubella
- low socioeconomic status- nutrition

Note- patent ductus is necessary for survival in patients with ductal-dependent anomalies

Patent Ductus Arteriosus

Complications
- excessive workload on left ventricle
- pulmonary artery disease (Eisenmenger's)
- chronic pulmonary infections

Patent Ductus Arteriosus

Manifestations
- persistent murmur
- decreased lung compliance ==> increased work of breathing
- cardiomegaly
- diagnosed by echocardiogram

Click for more information and pictures of PDA
http://www.pted.org/?id=patentductus1
Patent Ductus Arteriosus

- **Management**
 - **Medical**
 - ibuprofen (Advil) to close ductus
 - indomethacin to close ductus
 - intubate and ventilate with PEEP to improve oxygenation
 - **Surgical**
 - ligation (sometimes done in NICU)
 - division - requires thoracotomy

FYI - Click for article on PDA closure
http://pediatriccct.surgery.ucsf.edu/conditions-procedures/patent-ductus-arteriosus.aspx

Septal Defects

- **Normal pulmonary vascular resistance (PVR)**
 - left-to-right shunt
 - no effect on arterial blood gases
 - elevated mixed venous PO2
 - increased LV work
 - LV failure
 - CHF

Click to see evolution of Eisenmenger's complex

Septal Defects

- **Normal PVR**
 - left-to-right shunt
 - increased LV work
 - excessive pulmonary blood flow
 - causes chronic pulmonary infections
 - causes remodeling of pulmonary vasculature (Eisenmenger’s complex)

Click to see evolution of Eisenmenger’s complex

Septal Defects

- **Increased pulmonary vascular resistance**
 - right-to-left shunt
 - hypoxemia, refractory to supplemental O2

Small VSD

- **Manifestations**
 - may be asymptomatic
 - only clinical sign may be murmur
 - other data normal

Click to hear VSD murmur
http://www.wilkes.med.ucla.edu/Systolic.htm

Small VSD

- **Small VSD (less than diameter of aortic valve)**
 - left-to-right shunt if VSD < 50% aortic diameter
 - RV & LV pressures normal
 - May close spontaneously

Click to hear VSD murmur
http://www.wilkes.med.ucla.edu/Systolic.htm
Small VSD - Left-to-Right Shunt

VSD- Right-to-Left Shunt

Large VSD

VSD diameter > aortic valve
Hemodynamics
excessive PA flow ==> vascular remodeling ==> increased PVR ==> right-to-left shunt (hypoxemia)
Prolonged left-to-right shunt that causes remodeling of pulmonary vessels necessitates a heart & lung transplant

Manifestations
Murmur
CHF
Cyanosis with pulmonary hypertension
LV hypertrophy

Diagnosis
Echocardiography
Heart catheterization
Angiography

Management
Palliation, to reduce pulmonary blood flow
PA banding
subambient FIO2- causes pulmonary vasoconstriction
Correction- Gortex patch closure

Click for more information and pictures of VSD
http://www.pted.org/?id=ventricularseptal1

Copyright 2008 AP Jones
Pulmonary Artery Banding

- Palliative procedure to reduce pulmonary blood flow

Click for article about Flowatch PA band with illustrations
http://circ.ahajournals.org/content/110/11_suppl_1/II-158.full

Atrial Septal Defect

- Categories- based on position of the defect on atrial wall
 - ostium primum
 - ostium secundum
 - sinus venosus

Atrial Septal Defect

- Manifestations
 - murmur
 - may be otherwise asymptomatic for 20-30 years
 - normal PVR ==> left-to-right shunt ==> elevated RA and RV PO2

Click to hear murmur with ASD
http://www.wilkes.med.ucla.edu/Systolic.htm

Atrial Septal Defect

- Diagnosis
 - ECG - Right axis deviation
 - Echocardiography- detected with bubble test
 - Heart catheter- elevated RA, RV SO2

Click to see video on ASD repair (4 min)
http://www.youtube.com/watch?v=PzKJ_chafEU

Atrial Septal Defect

- Manifestations
 - murmur
 - may be otherwise asymptomatic for 20-30 years
 - normal PVR ==> left-to-right shunt ==> elevated RA and RV PO2
 - first sign may be right ventricular failure
 - may follow pathophysiology of VSD

Atrial Septal Defect

- Diagnosis
 - ECG - Right axis deviation
 - Echocardiography- detected with bubble test
 - Heart catheter- high RA, RV SO2
 - Treatment- closure in catheterization lab.

Click to see video on ASD repair (4 min)
http://www.youtube.com/watch?v=PzKJ_chafEU
Atrial Septal Defect
- left-to-right shunt

Endocardial Cushion Defect
- Pathogenesis- incomplete development of ECD
- Associated with trisomy 21 (Down’s syndrome)
- Defects- permutations of:
 - ASD
 - VSD
 - Cleft mitral, tricuspid valve leaflets

Endocardial Cushion Defect
- Hemodynamics-- depend on specific defects
 - ASD- L to R shunt
 - VSD- L to R shunt ==> left ventricular hypertrophy
 - Mitral regurgitation ==> left atrial hypertrophy
 - Increased PA flow ==> vascular remodeling & increased PVR

Endocardial Cushion Defect
- Manifestations
 - May be asymptomatic
 - May develop severe CHF & pulmonary edema
- Diagnosis
 - ECG- left axis deviation
 - Heart catheter- increased SaO2 in RA & RV
 - Echocardiography

Endocardial Cushion Defect
- Complete AV canal

Endocardial Cushion Defect
- Management
 - palliative PA banding
 - heart failure management
 - diuretics
 - digitalis
 - surgical correction
 - septal defect closure- Dacron patch
 - valvuloplasty- technically difficult
Obstructive Anomalies

Aortic stenosis
- Narrowed aortic outflow tract
- Hemodynamics: increased resistance to LV outflow ==> increased LV work ==> hypertrophy ==> LV failure

Aortic stenosis
- Manifestations
 - Ejection systolic murmur
 - Left ventricular hypertrophy
 - CHF, sudden death (severe)
- Management
 - Valvotomy, balloon valvuloplasty
 - Valve replacement

Coarctation of the Aorta
- Narrowing of portion of aorta
- Hemodynamics
 - Aortic obstruction
 - Severity dependent on degree of narrowing
- Associated with chromosomal abnormality - Turner's syndrome

Coarctation of the Aorta
- Manifestations
 - Reduced pulses, blood pressure in lower extremities
 - Headaches
 - Epistaxis
 - Leg cramps

Coarctation of the Aorta
- Manifestations
 - Left ventricular hypertrophy
 - CHF, pulmonary edema
 - Neonates - lower body cyanosis
 - Pre-ductal coarctation
 - In presence of PDA

Click for more information and pictures of aortic stenosis: http://www.pted.org/?id=aorticstenosis1

Click for more information and pictures of coarctation: http://www.pted.org/?id=coarctation1
Coarctation of the Aorta

- Pre-ductal coarctation proximal to ductus arteriosus

![Coarctation Diagram]

Management
- Avoid heavy exercise
- Balloon dilatation with stent
- Resection - may require graft

Coarctation of the Aorta

Conduction defect

- Wolff-Parkinson-White syndrome
- Impulse aberrantly conducted through bundle of Kent
- Manifestations
 - PR interval < 0.12s
 - Paroxysmal atrial tachycardia (PAT)
- Treatment
 - Medical - antidysrhythmics
 - Electrophysiology - ablation

Cyanotic Anomalies

Categories:
- Increased pulmonary blood flow
- Decreased pulmonary flow

Requirements for arterial desaturation
- Communication between systemic & pulmonary circulation
 - Abnormal vessels
 - Septal defects
- PVR > SVR
- Desaturation due to intracardiac shunt is unresponsive to increased FiO2
Cyanotic Anomalies
- Conditions with low pulmonary flow
 - Tetralogy of Fallot
 - Pulmonary atresia
 - Tricuspid atresia
 - Bicuspid atresia, AKA hypoplastic left ventricle

Cyanotic Anomalies
- Conditions with high pulmonary flow
 - Transposition of great vessels
 - Persistent truncus arteriosus
 - Total anomalous pulmonary venous return

Tetralogy of Fallot
- Defects (tetra = four)
 - Pulmonary stenosis
 - Ventricular septal defect (VSD)
 - Overriding aorta—aorta straddles both ventricles
 - Right ventricular hypertrophy

Hemodynamics
- Pulmonary stenosis
 - Determines PA resistance to flow
 - Regulates resistance to right ventricular flow
 - Determines right to left shunt
 - Leads to RV hypertrophy
 - Degree of stenosis determines urgency of surgical intervention

- VSD—channel for shunt
 - Will be left-to-right with low pulmonary resistance
 - Usually large
Tetralogy of Fallot

Hemodynamics
- Overriding aorta
 - Carries outflow from both ventricles
 - Contributes to severity of shunt
- RV hypertrophy
 - Chronic elevated flow resistance
 - Very large VSD- equalizes pressures in LV and RV

Spectrum from "pink tets" to emergent cases in neonatal stage
- May not appear until closure of PDA, then pulmonary blood flow declines

Click for more information and pictures of TOF
http://www.pted.org/?id=tetralogyfallot1

Manifestations
- Cyanosis- "tet spells" with exertion
- Squatting to relieve exertional spells
- Clubbing
- Growth retardation
- Systolic ejection murmur

Chest x-ray- 'boot-shaped' heart
- ECG-- right axis deviation
- Echocardiography- usually definitive
- Catheterization

Click to see 'boot-shaped' heart on x-ray
http://www.bcm.edu/radiology/cases/pediatric/text/3a-desc.htm

Management of tet spells
- Fetal positioning
- Morphine
- Oxygen- an exception for supplemental O2
- Bicarbonate
- Propranolol
- Vasoconstrictors

Palliation- arterial to pulmonary artery shunts
- Bypass stenotic pulmonary valve
- Increase pulmonary blood flow
- Total correction
 - Excision of PV obstruction
 - Patch closure of VSD
Tricuspid atresia

Defects
- Atretic tricuspid valve - does not open, so blocks blood flow from atrium to ventricle
- Diminutive (small) RV
- VSD & ASD

Blood flow
- Vena cava to RA to ASD to LA to LV to RV (via VSD)

Click for more information and pictures of tricuspid atresia
http://www.pted.org/?id=tricuspidatresia1

Signs
- Early cyanosis (from birth)
- Worsening, death on closure of ductus arteriosus
- Growth retardation
- Squatting
- Clubbing

Diagnosis
- ECG - left axis deviation
- Echocardiography
 - Diminutive right ventricle
 - Absent tricuspid echoes
- Catheterization - catheter will not enter RV
Tricuspid atresia

- Palliative procedures - to increase pulmonary blood flow
 - Maintain PDA
 - Subambient FIO2
 - Alprostadil
 - Stent placement
 - Waterston shunt - aorta to RPA
 - Blalock-Taussig (BT) shunt - from subclavian artery to PA

Tricuspid atresia

- Management
 - Corrective - Fontan
 - High risk, high failure rate
 - Bypass RV by directing blood from RA to PA
 - Pulmonary blood flow becomes dependent on passive venous return.

Click to see pictures of the Fontan procedure
http://www.pted.org/?id=fontan1

Bicuspid atresia - hypoplastic LV

- Defects
 - Atretic bicuspid valve
 - Diminutive LV
 - VSD & ASD

Hypoplastic LV

- Signs
 - Early cyanosis
 - Shock
 - Worsening, death with DA closure

Click to see hypoplastic LV
http://www.pted.org/?id=hypoplasticleft1

Hypoplastic LV

- Echocardiogram
 - Diminutive left ventricle
 - Absent bicuspid echo

Hypoplastic LV

- Maintain PDA
- Surgical management
 - Norwood - multiple stage procedure
 - Fontan
 - Blalock-Taussig (BT) shunt
Persistent truncus arteriosus

- **Defects**
 - Single artery for LV & RV
 - VSD

Hemodynamics
- Truncus carries blood to PA & aorta
- Flow is dependent upon resistance to flow at each side
- Increased SVR ==> increased pulmonary flow
- Increased PVR ==> increased systemic flow

Decreased PVR ==> excessive pulmonary blood flow ==>
- High output LV failure (CHF)
- Pulmonary vascular dx
- Increased PVR ==> reduced in pulmonary blood flow ==> hypoxemia

Diagnosis
- CXR - cardiomegaly
- ECG - combined hypertrophy
- Echocardiogram
 - Visualize vessel origins
 - One semilunar valve
- Catheterization - equal LV & RV pressures

Manangement
- Heart failure
 - Digoxin
 - Diuretics
- Palliative - reduce PA flow
 - PA banding
 - Subambient FIO2

Click to see chest xray of patient with truncus arteriosus
http://cardiopedia.wdfiles.com/local--files/truncus-arteriosus/truncus%20arteriosus%20type%201.jpg
Persistent truncus arteriosus
- Corrective surgery
- Main trunk moved to left
- Creation of outflow tube from RV to PAs
- Closure of VSD

Transposition of great arteries (TGA)

- **Defects**
 - Aorta arises from RV
 - Pulmonary artery arises from LV
 - ASD and/or VSD, PDA (increase chance for survival)

- **Hemodynamics**
 - Separate circulations
 - Pulmonary venous blood to LA to LV through PA to lung
 - Systemic venous return to RA to RV to aorta to system
 - Without septal defect, life impossible
 - With VSD, there is mixing

- **Diagnosis**
 - CXR -- cardiomegaly
 - Echocardiogram -- visualize vessels
 - Catheterization -- catheter enters aorta from RV

- **Management**
 - Palliative
 - Maintain PDA
 - Balloon septostomy

TGA

- **Signs**
 - Diabetic mother -- high risk
 - Early cyanosis
 - CHF

Click for more information and pictures of TGA
http://www.pted.org/?id=transpositiond1
TGA

▲ Management

◆ Corrective

➢ Mustard -- baffle in atria

➢ Jatene (switch) -- vessels switched to correct ventricles

Therapeutics

Maintaining a PDA

▲ Indication -- ductal dependent cardiac anomaly; e.g.:

◆ transposition of great arteries

◆ tricuspid atresia

◆ mitral atresia

▲ Methods

◆ stent

◆ alprostadil (Prostin)

◆ subambient O2

Subambient O2 Therapy

▲ goals

◆ increase pulmonary vascular resistance to reduce pulmonary blood flow

➢ large VSD

➢ endocardial cushion defect

➢ persistent truncus arteriosus

◆ prevent closure of ductus arteriosus

➢ transposition of great arteries

➢ tricuspid atresia

Subambient O2 Therapy

▲ methods

◆ bleed-in nitrogen to ventilator circuit

◆ obtain premixed subambient mixture in cylinder

◆ titrate FIO2 to SaO2 80-85%

▲ problem -- some O2 analyzers may not measure subambient FO2

Post-surgical Considerations

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Response</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA closure PIP</td>
<td>Increase CL</td>
<td>Decrease</td>
</tr>
<tr>
<td>PA band</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-PA shunts PIP</td>
<td>Decrease CL</td>
<td>Increase</td>
</tr>
<tr>
<td>DA patency</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Special issues
- Transplant organs difficult to obtain.
- Patients' hearts can outgrow synthetic structures, like valves.
- Oxygen therapy can kill patients with ductal dependent anomalies.

Summary & Review
- Development of the cardiovascular system
 - endocardial cushion
 - truncus arteriosus
 - fetal circulation with shunts
 - changes at birth

Summary & Review
- Congenital heart disease
 - etiologic factors
 - historical manifestations
 - physical manifestations
 - diagnostic procedures
 - categories
 - acyanotic
 - cyanotic
 - obstructive
 - conduction defects

Summary & Review
- Acyanotic defects
 - types
 - persistent fetal structures
 - ventricular septal defects
 - atrial septal defects
 - endocardial cushion defects
 - complications
 - remodeling of pulmonary vessels
 - left ventricular failure

Summary & Review
- Acyanotic defects
 - management
 - palliation with PA bands
 - total correction

Summary & Review
- Obstructive defects
 - types
 - aortic stenosis
 - coarctation of the aorta
 - manifestations
 - management
 - limit exercise
 - surgical repair
Summary & Review

Conduction defect- WPW syndrome
- abnormal conduction pathway
- ECG- decreased P-R interval
- management
 - medications for PAT
 - ablation of bundle of Kent

Cyanotic defects
- types- high, vs. low pulmonary blood flow
- ductal dependence
- manifestations
 - cyanosis
 - tetralogy spells
 - ventricular failure

Cyanotic defects
- tetralogy of Fallot
- tricuspid atresia
- hypoplastic left ventricle (mitral atresia)
- Persistent truncus arteriosus
- Transposition of great arteries

Subambient oxygen therapy
- Postoperative expectations
- Issues in congenital heart disease

References

END