Learning Objective:
- Explain hemodynamic monitoring techniques and the implications of values for hemodynamic parameters.

Rationale
- Hemodynamic data are crucial in diagnosis and management of many critically ill patients
- Gold standard for monitoring involves invasive techniques with complications
- Noninvasive monitoring would avoid complications, while providing necessary data

Noninvasive Monitoring

Methods:
- Impedance cardiography
- Echocardiography
- Partial CO2 rebreathing

Impedance Cardiography
- Description- translates electrical conductivity in the thorax into blood flow data
- Presently, not a viable alternative to invasive procedures
Impedance Cardiography

Lead placement

Click to see impedance cardiography (ICG) lead placement and overview
http://impedancecardiography.com/icgover10.html

Impedance Cardiography

Data obtained

- Cardiac Output (CO)
- Stroke Volume (SV)
- Systemic Vascular Resistance (SVR)
- Acceleration Index (ACI) initial acceleration of blood flow in aorta
- Thoracic Fluid Content (TFC)

FYI - Click to view or download a PowerPoint on impedance cardiography
http://www.powershow.com/view/15afd7-ZGUyO/Prospective_Evaluation_and_Identification_of_Cardiac_Decompensation_in_Patients_with_Heart_Failure_b_flash_ppt_presentation

Echocardiography - Types

- transesophageal echocardiography (TEE)
- stress echocardiography
- three-dimensional

FYI - Link to more information on echocardiography
http://www.echoincontext.com/basicEcho.asp

Echocardiography

Data obtained

- cardiac chamber size,
- wall thickness & motion,
- valve configuration & motion
- proximal great vessels
- pericardial effusions
- neoplasms
- congenital defects
- estimates cardiac output
- estimate pulmonary artery pressure

FYI - Link to more information on echocardiography
http://www.echoincontext.com/basicEcho.asp

Partial CO2 Rebreathing

Description

- uses ratio of change in PetCO2 and CO2 excretion, in response to 50 sec rebreathing, to calculate pulmonary capillary blood flow.
- CO is estimated by adding a correction factor for shunt flow, based on SpO2.
Partial CO2 Rebreathing

- Data obtained
 - cardiac output - good correlation with thermodilution technique
 - systemic vascular resistance
 - pulmonary capillary blood flow
 - EtCO2, VCO2
 - Alveolar VE

Partial CO2 Rebreathing

- Applications
 - hemodynamic monitoring
 - fluid management
 - ventilator management
 - ventilator weaning

Partial CO2 Rebreathing

- Novametrix NICO (TM) monitor

FYI - Link to NICO respironics
http://nico.respironics.com/

Invasive Monitoring

Overview

- Definition - invasive procedures to measure blood flow and pressures
- Indications
 - hypovolemia
 - septic shock
 - pulmonary edema
 - pulmonary hypertension
 - cardiac failure
 - cardiovascular surgery
 - multiple organ system failure

Measured Parameters

- systemic arterial pressures
- central venous pressure
- cardiac output
- pulmonary arterial pressure
- pulmonary arterial occlusion (wedge) pressure
- systemic vascular resistance
- pulmonary vascular resistance
Arterial Lines

Purposes
◆ obtain blood for gas analysis
◆ monitor arterial pressure
▶ titration of vasoactive drugs
▶ patients with extreme pressures

Click to see arterial pressure waveform
http://ericglenn.com/images/Project1.jpg

Normal Arterial Pressures
◆ systolic = 120 mm Hg
◆ diastolic = 80 mm Hg
◆ pulse pressure = 40 mm Hg
◆ mean pressure = 100 mm Hg

Abnormal Arterial Pressures
◆ decreased systolic
◆ hypovolemia
◆ cardiac failure
◆ vasodilation
◆ decreased diastolic- important, because coronary flow occurs on diastole

Abnormal Arterial Pressures
◆ decreased pulse pressure
◆ first sign of hypovolemia
◆ cardiac tamponade
◆ mean arterial pressure (MAP)
◆ decreased values precede multiple organ system failure
◆ used to titrate vasoactive agents
◆ used to reflect myocardial work

Error Sources For Arterial Pressures
◆ air in lines- decreased pressure
◆ loose connections- decreased pressure
◆ clotting- decrease or eliminate pressure

Complications of Arterial Lines
◆ hemorrhage
◆ infection
◆ ischemia- best to use artery with collateral flow
Central Venous Line

Description: Insertion of line that goes to vena cava

Purposes:
- Measure central venous pressure (CVP)
- Venous access for infusion, when peripheral lines cannot be inserted

Central Venous Line Purposes:
- Administration of vasoactive/inotropic drugs that cannot be given peripherally
- Administration of hypertonic solutions including total parenteral nutrition
- Hemodialysis/plasmapheresis

Central Venous Line Sites

- Femoral vein
- Internal jugular vein
- Subclavian vein
- Peripherally-inserted central catheter (PICC)

Central Venous Line Sites

- Subclavian vein

 FYI - Click for video of subclavian line placement (3) (requires sign-in for age verification)

http://www.youtube.com/watch?v=iIAhNsww9yc

Central Venous Line Sites

- External jugular vein

 Click to see illustration of external jugular vein

http://cordial.perso.infonie.fr/jex06.jpg

 FYI - Click to see video of external jugular vein cannulation (13 min.)

http://clip.bing.com/_bl-7hpDU12/1 video/11/26/2016/AAAAXAAAASGAA/tF///y99%7Vj0b/clickvideo.gif

Central Venous Line Sites

- Peripherally inserted central catheter (PICC)

 Click to see illustration of PICC line in place

http://clip.bing.com/_bl-7hpDU12/1 video/11/26/2016/AAAAXAAAASGAA/tF///y99%7Vj0b/clickvideo.gif
Central Venous Lines

Advantages (compared to peripheral sites):
- accommodate high flows
- easier to place with hypotension
- permit monitoring

Disadvantages
- more complications
- must interrupt CPR to insert (except PICC)

Complications
- damage to thoracic duct, nerves
- infusion of fluids into mediastinum
- pneumothorax- subclavian veins
- air embolus
- infection
- cannulation of artery

FYI - Click for article about central venous monitoring
http://www.bmj.sk/2008/10904-10.pdf

Central Venous Pressure

Normal <5 mm Hg

Decreased by:
- hypovolemia
- decreased intrathoracic pressure
- increased cardiac output

Increased by:
- right ventricular or bi-ventricular failure
- hypervolemia
- increased intrathoracic pressure; e.g., PEEP
- pulmonary hypertension
- pulmonary embolism
- tamponade

Pulmonary Artery Catheter

AKA, Swan-Ganz catheter- inserted through heart, into pulmonary artery

Purposes:
- measure PA pressures
- measure cardiac output
- obtain mixed venous blood
- monitor mixed venous saturation
- provide atrial-ventricular pacing
Pulmonary Artery Catheter

Insertion

- Peripheral veins - less complication
- Jugular veins - right jugular is most direct
- Subclavian veins - less chance of carotid puncture

Insertion

- Guidance for insertion
 - Fluoroscopy - in catheterization lab
 - Pressures/pressure waveforms
- Catheter advanced to right atrium, then balloon is inflated
- Balloon floats catheter through ventricle to pulmonary artery

If catheter advanced to 50 cm and pulmonary waveform is absent, assume it is curling in atrium or ventricle ==> deflate, withdraw to atrium & proceed again

Click to see different types of PACs
http://www.edwards.com/products/pacatheters/

Click for information and images of PAC components
http://www.mceus.com/hemo/pacath.htm

Click to see illustration of PA catheter in place
http://cvphysiology.com/Heart%20Failure/HF%20pulmonary%20wedge%20pressure.jpg
Pulmonary Artery Catheter

Insertion- confirmed by:
- pressure wave form
- arterialized blood from wedge sample
- chest radiograph

Click to see pressure waveforms for PA catheter
http://www.frca.co.uk/images/pac1.jpg

Complications
- infection
- pneumothorax
- dysrhythmias
- air embolism
- perforation of vessels, heart

Click for article with x-ray of knotted PA catheter
(Click on the thumbnails)

Interpretation- PA pressures
- Normal = 22/8 (mean = 13)
- Decreased by:
 - RV failure
 - pulmonary vasodilation
 - hypovolemia

Increased by:
- pulmonary embolism
- pulmonary vasoconstriction-
 (PADP - PAOP) >5 ==> increased PVR
- LV failure
- congenital heart disease with left-to-right shunt

Click to see x-ray of PA catheter placed correctly
http://webmm.ahrq.gov/media/cases/images/case51_fig3.jpg

Click to see x-ray of PA catheter placed distally
http://www.learningradiology.com/caseofweek/caseoftheweekpix2010%20387-/cow396-2arr.jpg
Pulmonary Artery Catheter

Interpretation - PAOP (wedge)
- Intended to reflect LV preload
- Created by inflating balloon in small branch of PA
- Normal:
 - 4-12 mm Hg, or
 - 2 mm less than PADP

Interpretation - PAOP
- Increased by:
 - LV failure (>18 mm Hg)
 - PAOP > 25 mm => pulmonary edema, depending on colloid osmotic pressure (COP)

Interpretation - PAOP
- Increased in:
 - mitral valve stenosis, regurgitation
 - pulmonary venous constriction or obstruction
 - high levels of PEEP - do not remove from PEEP to measure PAOP

Optimal PAOP
- 12- without PEEP
- 18- with PEEP

Invasive CO Measurement

Methods
- dye dilution
- Fick method
- intermittent thermodilution - solution injected for measurement
- continuous thermodilution - solution automatically injected by system
- continuous SvO2 monitoring - depends on constant SaO2

Cardiac Output Parameters

Normals
- CO = 4-8 L/min
- CI (CO/BSA) = 2.5-5.0 L/min/m²
- SVR = 900-1400 dynes/sec/cm²
- PVR = 110-250 dynes/sec/cm²
- EF = 65-75%
Components of Monitoring System
- Catheter - patency maintained by heparanized solution under pressure
- Transducer - translates pressure to electronic signal
- Computer for CO
- Monitor - to display data

Technical Aspects Of Monitoring
- Transducers
 - calibrated with manometer
 - zeroed at level of atria
- Monitor sensitivity calibrated each shift

Technical Aspects Of Monitoring
- Transducers
 - calibrated with Hg manometer
 - zeroed at level of atria
- Monitor sensitivity calibrated
- Tubing tested for dampening
- Circuit must be air-free
- Patency confirmed by visibility of wave fluctuations with ventilation

Summary & Review
- Noninvasive monitoring
 - purposes
 - parameters
 - types:
 - impedance cardiography
 - echocardiography
 - partial rebreathing ETCO2

Summary & Review
- Invasive monitoring
 - purposes
 - parameters - values, significance
 - complications
 - types:
 - arterial pressure
 - central venous
 - pulmonary artery catheter
 - cardiac output

Reference