Independent Lung Ventilation

Arthur Jones, EdD, RRT

http://rc-edconsultant.com/

Learning Objectives:

- Explain the rationale and physiological basis for independent lung ventilation (ILV)
- Identify clinical indications for ILV.
- Describe the permutations of ILV.
- Describe the equipment applied to ILV.
- Explain the airway management procedures applied to ILV.
- Explain the monitoring techniques applied to ILV.
- Explain the ILV strategies applied to specific conditions.

Description- ILV

- ILV is a ventilation strategy wherein the lungs are ventilated separately using a double-lumen tracheal tube (DLT).
 - Initially developed to isolate lungs during surgical procedures
 - Subsequently applied beyond the operating room for unilateral lung conditions

ILV Indications & Rationale

- During thoracic surgical procedures- ventilate one lung, while other one is resected, removed.
- Lung lavage- ventilate each lung while other lung is lavaged, as for:
 - Alveolar proteinosis
 - Cystic fibrosis

FYI - Link to information on lung lavage
http://respiratory-research.com/content/6/1/138

ILV Indications & Rationale

- Massive hemoptysis- may ventilate only one lung
- Unilateral purulent infection- prevent spread of infection to healthy lung
- Single lung transplant- donor lung may have significantly different mechanical properties

FYI - Link to indications and rationale for lung isolation
http://www.anesthesia.org/winterlude/w097/W_LungIsolation.html
ILV- Indications & Rationale
- Bronchopleural fistula (BPF) - ventilate diseased lung (DL) with decreased volume & pressures to permit healing
- Unilateral lung disease; e.g., pulmonary contusion - ventilate diseased lung (DL) without injuring normal lung (NL)

ILV- Permutations
- Synchronized ILV- ventilators interconnected to synchronize triggering
- Asynchronous ILV- ventilators operated independently

ILV- Permutations
- Synchronized ILV- ventilators interconnected to synchronize triggering
- Asynchronous ILV- ventilators operated independently
- ILV with conventional ventilation and high-frequency ventilation

ILV Equipment

Airways
- Double-lumen tracheotomy tubes
- Double-lumen endotracheal tube
- Endotracheal tubes with blocker-used for one-lung ventilation
Airways
- Double-lumen tracheotomy tubes
- Double-lumen endotracheal tube
- Endotracheal tubes with blocker - used for one-lung ventilation
 - Arndt wire-guided endobronchial blocker (Cook Critical Care)
 - Univent TCB tube

Double-lumen endotracheal tube (DLT) AKA Carlens tube
- Bronchial cuff
- Tracheal cuff
- Ventilator connectors

Univent Torque Control Blocker (TCB) tube
- CPAP
- Insufflation
- Exhaust

Monitoring equipment
- End-tidal CO2 monitors (2)
- Ventilation graphic monitors
- Cuff pressure manometer

SILV Capable Ventilators
- Siemens Servo 900C
- Siemens 300
- Bennett 7200
- Draeger Evita
- Note - non-synchronized ILV may be as effective
ILV Airway Management

Intubation
- Done by trained anesthesiologist
- Estimation of depth - preoperative radiograph
- Selection of tube size
 - too small - inadequate isolation
 - too large - airway trauma

Intubation
- Placed with:
 - standard fiberoptic bronchoscopy
 - video-assisted bronchoscopy
 - video-optical stylet

Click to see intubation with video-optical stylet
http://www.youtube.com/watch?v=Dyjq6BlEkps

Intubation
- Left bronchus intubated, because:
 - it is longer (4-5 cm) - correct placement and maintenance is more likely than with right
 - intubation of right bronchus (1.5-2 cm) is more difficult
- Right bronchus intubated for left bronchial surgery

Click for video on function of left DLT
http://www.youtube.com/watch?v=HfY5060Q2h4

Confirmation of Tube Placement
- auscultation - unreliable as sole indicator - 61% failure rate (left)
- sequential ventilation of individual lungs - listen & observe for ventilation of contralateral lung
- bronchoscopy - gold standard

Functional Separation
- failure of ventilatory separation results from tube cuff failure or underinflation
- detected by sequentially ventilating lungs and detecting tidal volume from non-ventilated lung - place on spontaneous mode
Maintaining Tube Placement

- movement by as little as 16 mm can compromise ILV
- prevention of misplacement
 - paralysis, sedation of patient
 - secure tube-anchoring technique
 - ventilator tube suspension; e.g. ventilator arms, angel frames
 - extreme caution, if and when turning patient

Suctioning

- preoxygenate with both ventilators
- suction catheter
 - 8-10 Fr.
 - 22-24 cm (adult length)
- thick secretions difficult to suction through smaller catheters ==> adequate humidification is critical

Cuff Management

- As little as 4.0 ml in cuff may generate excessive pressure on tracheal/bronchial wall
- With appropriate-size tube, a seal should be accomplished with 2.0-3.5 ml.

Cuff Management

- Monitoring should include:
 - minimal occlusive volume
 - cuff pressure

Complications of DLTs

- tracheal or bronchial trauma-rupture
 - inappropriate tube size
 - excessive cuff volume
 - nitrous oxide anesthesia- diffuses into cuff, increasing volume

Complications of DLTs

- malpositioning
 - lack of functional separation
 - unilateral ventilation
 - inability to suction
- increased airway resistance
- laryngeal, vocal cord trauma
- patient discomfort

FYI - Click for article on lung isolation techniques
http://www.anesthesia.org/winterlude/wl97/W_LungIsolation.html
Ventilation Techniques

General Strategies
- One lung ventilation
- Ventilation for bronchopleural fistula
- Ventilation for unilateral lung disease

One Lung Ventilation
- Primarily, an operating room technique
- Airways used
 - Univent tube
 - DLT with bronchial blocker
- Poorly-tolerated in some patients
- Invokes a 35-40% shunt, which is worse if:
 - larger, right lung is non-ventilated
 - ventilated lung is diseased
 - nitrous oxide anesthesia is used

Shunt, which can be reduced by:
- applying CPAP to non-ventilated lung
- using isoflurane anesthesia
- intermittent re-inflation of non-ventilated lung
- administering inhaled vasodilator to ventilated lung to increase perfusion:
 - nitric oxide
 - prostacyclins (e.g., Flolan)
ILV For BPF

- BPF defined: persistent bronchopleural airleak
- Associated with high mortality

BPF

Causes:
- Ventilator-induced lung injury
- Surgical complication; e.g. bronchial stump rupture
- Trauma
- Necrotizing pulmonary infection
- Bullous emphysema (predisposing factor)

BPF

Manifestations:
- Persistent airflow through chest tube
- Exhaled tidal volume significantly less than inhaled volume
- Ventilatory failure refractory to increased ventilation settings

BPF

Manifestations:
- $\text{PaCO}_2, \text{EtCO}_2$ likely decreased, due to excretion of CO_2 through chest tube
- Elevated PaCO_2 reflects severe disease in the lung without fistula

FYI - Click to download article on BPF
http://www.chestjournal.org/content/128/6/3955.full.pdf

BPF

Problem: Conventional ventilation applies equal pressures to lungs, worsening leak, preventing healing of fistula.

- ILV permits ventilation of DL at reduced pressure & volume, while ventilating NL.

BPF

Alternative measures:
- Manipulation of chest tube suction
- Obstruction of chest tube during inspiration
- High-frequency ventilation - success is not substantiated
Goals
- Oxygenate, ventilate patient
- Permit healing of BPF
- Avoid tension pneumothorax

Procedure
- Place chest tube large enough to accommodate leak to avoid tension pneumothorax
- Minimize pleural suction

Procedure
- Connect to two ventilators
- If synchronized, label ventilators
- If synchronized, rate for both will be adjusted with master ventilator
- Secure, suspend ventilator circuit

Procedure
- Ventilate DL to minimize air flow through fistula
 - Adjust TV, PIFR for PIP < 30 cm H2O
 - PEEP ≤ 6 cm H2O

Procedure
- Ventilate NL
 - Adequate oxygenation
 - CO2 removal usually not problematic
 - Lung protective strategies
ILV For BPF

- Monitoring
 - tube position
 - tube length markings
 - auscultation
 - bronchoscopy, if misplacement suspected

- Monitoring
 - tube position
 - tube length markings
 - auscultation
 - bronchoscopy, if misplacement suspected
 - cuff inflation
 - cuff pressure
 - minimal occlusive volume

ILV For BPF

- Monitoring
 - volume of bpf leak = (TVi - TVe)
 - lung mechanics
 - static compliance
 - airway resistance
 - plateau pressure
 - total PEEP
 - EtCO2- increased CO2 from DL indicates less leakage

- Monitoring
 - when air leak reaches minimal volume
 - replace DLT with ETT and ventilate with minimal plateau pressure (Ppt)

ILV For Unilateral Lung Disease

- Conditions- unilateral:
 - blunt trauma- pulmonary contusion
 - pneumonia, aspiration pneumonitis
 - ARDS
 - re-expansion/re-perfusion pulmonary edema
 - single lung transplant

FYI - Link to information on re-expansion/reperfusion pulmonary edema
http://www.learningradiology.com/notes/chestnotes/reexpandpulmedepage.htm

- Problem- DL has decreased compliance =>
 - with conventional ventilation, tidal volume goes to NL
ILV For Unilateral Lung Disease

Problem: DL has decreased compliance =>
- with conventional ventilation, TV goes to NL
- increasing ventilation pressures causes:
 - perfusion to shift to DL => increased shunt
 - overexpansion of NL => volutrauma

Goals

- improve ventilation-perfusion matching by maximizing recruitment in DL
- avoid barotrauma/volutrauma by using lung-protective strategies for each lung

Procedure

- determine need for ILV
 - unilateral disease, as per chest radiograph
 - failure to oxygenate with conventional ventilation

- place & confirm placement of DLT as for BPF
- connect to two ventilators, as for BPF
- adjust frequency to physiologic range- avoid inadvertent PEEP
- adjust each TV for plateau pressure Ppt < 26 cm H2O

- identify best PEEP for DL
- maintain TV for plateau pressure Ppt ≤ 26 cm H2O
- as Ppt in DL decreases, increase TV to attain 26 cm H2O

Monitoring

- tube position, as for BPF
- cuff inflation, as for BPF
- lung mechanics, as for BPF
- EtCO2 (if available)- evaluates ventilation-perfusion matching
- usual critical care monitors- ECG, SPO2, etc.

FYI - Link to information on EtCO2 monitoring with DLTs
http://www.capnography.com/Thoracic/dlt.htm
ILV For Unilateral Lung Disease

◆ Discontinuation
 ▶ determining readiness
 ▶ when Cst between lungs differs less than 20%
 ▶ when TVs are within 100 ml
 ▶ when EtCO2 equalizes
 ◆ replace DLT with standard ETT
 ◆ apply conventional ventilation

Final Notes

◆ ILV is a complex procedure, requiring special knowledge, skills and attention to detail on the part of all caregivers.
◆ ILV should not be undertaken by those without the requisite skills, knowledge or attentiveness.

Summary and Review

◆ Indications for ILV
◆ Rationale
◆ Permutations for ILV
◆ ILV equipment
 ◆ special endotracheal tubes
 ◆ ventilators
 ◆ monitoring equipment

Summary and Review

◆ Techniques for ILV
 ◆ single lung ventilation
 ◆ bronchopulmonary fistula
 ◆ unilateral lung disease

References

References

References