Learning Objectives:
- Explain the rationale, indications, and complications for high frequency jet ventilation (HFJV)
- Describe the equipment used in HFJV.
- Explain patient management techniques associated with HFJV
- Apply jet ventilation management techniques in patient scenarios.

High-frequency ventilation types
- High-frequency positive pressure ventilation - conventional ventilation with high frequencies
- High-frequency flow interruption
 - early form of HFV
 - interruption of gas flow from a high pressure source at a high rate

High-frequency ventilation types
- High-frequency percussive ventilation (HFPV)
 - high-frequency pulsations with conventional breaths
 - volumetric diffusive ventilation - Bird VDR 4™ applied to:
 - inhalation injuries - burn centers
 - ventilation during airway surgery
 - neonatal ventilation

High-frequency ventilation types
- High-frequency oscillatory ventilation (HFOV)
 - high-frequency ventilation with tidal volume less than dead space
 - first developed by Emerson - 1950s
 - most common HFV technique for pediatric patients
 - approved, available and used for adults

Click to see Bird VDR4™
http://www.percussionaire.com/VDR4page.asp

Click to see SensorMedics 3100a oscillator
http://www.generalbiomedical.com/Catalog_Photos_LARGE/3100Large.jpg

High Frequency Jet Ventilation
Arthur Jones EdD, RRT
http://rc-edconsultant.com/
High-frequency ventilation types

- High frequency jet ventilation (HFJV)
 - high frequency ventilation with delivery of a tidal volume (1-3 mL/kg) at a high flow (jet)
 - originally used for short-term ventilation during airway surgery (1970s) because of capability to ventilate in face of leaks

Rationale, Principles, Indications & Complications

Rationale

- Small tidal volume minimizes ventilator-induced lung injury and permits greater PEEP - lung protective ventilation strategy.
- Short inspiratory time and small TV minimize flow through leaks.

Mechanism for gas transport

- Bulk convection - jet of gas moves through the center of airways through dead space gas, delivering fresh gas to distal airways, with passive exhalation around the jet stream.

- Pendelluft - collateral exchange between distal units with varying compliance at:
 - airway bifurcations
 - pores of Kohn
 - canals of Lambert
- Simple molecular diffusion

Mechanism for gas transport

- Resonant frequency - lungs have innate resonant frequency.
- Ventilation is augmented because less pressure is required to ventilate lungs at their resonant frequency:
 - 4 - 8 Hz (adults)
 - 10-12 Hz (small neonates)
Additional effects
- Vibrations and expiratory flow along airway lumen mobilize secretions
- Short inspiratory time minimizes peak alveolar pressure - less pressure is transmitted to alveoli
- Small tidal volume minimizes lung motion during ventilation

Indications - neonatal/pediatric
- Ineffectiveness of other ventilation methods and BEFORE ventilator-induced lung injury occurs
- Evolving chronic neonatal lung disease (bronchopulmonary dysplasia)

Indications - neonatal/pedicatric
- Failure of other ventilation methods and BEFORE ventilator-induced lung injury occurs
- Evolving chronic neonatal lung disease (bronchopulmonary dysplasia)
- Congenital diaphragmatic hernia
- Meconium aspiration
- Ventilation during transport, with or without inhaled nitric oxide

Indications - all patients
- Pulmonary air leaks; e.g., bronchopulmonary fistula
- Difficult airway management
 - ventilation during intubation
 - ventilation during tracheostomy
 - ventilation during bronchoscopy

Indications - all patients
- Pulmonary air leaks; e.g., bronchopulmonary fistula
- Difficult airway management
 - ventilation during intubation
 - ventilation during tracheostomy
 - ventilation during bronchoscopy
- Elimination of lung motion during chest surgical procedures
- Ventilation during airway surgery
- Ventilation following pneumonectomy
Contraindication

- Effectiveness of conventional ventilation methods.

Complications

- Intracranial hemorrhage
- Periventricular leukomalacia - ischemic white matter injury
- Hypotension
- Air trapping - inadvertent PEEP
- Pneumo/thorax/mediastinum
- Mucosal desiccation - inadequate humidification

Evidence on effectiveness

- Meta-analyses of RCTs on HFJV for premature infants conclude that there is inadequate evidence - not enough trials.
- HFJV is another tool that requires judicious application on a case-by-case basis.

Jet Ventilators

Jet ventilation techniques

- Normal frequency jet ventilation
- High frequency jet ventilation - rates >60/min
- Combined frequency jet ventilation - rates > 60/min combined with normal rates

Jet ventilators

- No longer manufactured
 - Infrasonic Adult Star™
 - Bear 150™
 - Bunnell Life Pulse™
 - Accutronics
 - Mistral™
 - Monsoon™
Bunnell Life Pulse™
- Currently used for neonates and pediatric patients (< 28 kg) in USA
- Applied in tandem with companion ventilator that provides:
 - PEEP
 - sigh breaths
 - spontaneous breathing source gas

Bunnell Life Pulse™
- Controls - companion ventilator
 - FIO2 - ideally, same blender as jet
 - Rate ≤ 5/min - ideally zero
 - PEEP - adjusts mean airway pressure (MAP)
 - Peak inspiratory pressure (PIP)

Bunnell Life Pulse™
- Controls - jet
 - FIO2 - low-flow blender, ideally same blender as companion
 - Peak inspiratory pressure - (8 - 50 cm H2O)
 - Rate - (240 - 660/min)
 - On time (inspiratory time) - (0.02 - .034 sec.)

Click to see Life Pulse panel (click individual sections)
http://www.bunl.com/product-tabs2.html#

Bunnell Life Pulse™
- Monitors
 - jet PIP displays distal pressure (companion PIP displays proximal pressure)
 - PEEP
 - delta P - (PIP - PEEP)
 - mean airway pressure
 - servo pressure - servo-controlled drive pressure that adjusts flow to maintain PIP

Accutronics Mistral™
- Short-term ventilation; e.g., operating room
- Controls
 - rate 12-150/min
 - inspiratory time% 20-60%
 - drive pressure 5 - 40 psi

Accutronics Monsoon™
- Short or long-term (includes humidification)
- Controls
 - rate 12-1600/min
 - inspiratory time% 20-60%
 - drive pressure 5 - 40 psi
 - humidification - up to 100% RH

Click to see Accutronics Monsoon™ ventilator
Accutronics Monsoon™

- **Additional features**
 - color touch screen
 - detachable control panel
 - options:
 - video camera
 - EtCO2
 - TcCO2
 - double jet

Airway devices

- **Bunnell LifePort™ adapter - for Life Pulse™ ventilator**
 - attaches to ETT and pressure monitoring port
 - approximates distal airway pressure
 - use the same size as ETT or larger

Click to see Bunnell LifePort™ adapter (click LifePort)

Airway devices

- **Triple-lumen jet endotracheal tube**
 - ports
 - distal pressure monitoring
 - companion ventilator
 - jet ventilator

Airway devices

- **Percutaneous catheter**
 - ventilation via cricothyrotomy
 - difficult airway management strategy

Click to see percutaneous catheter
http://archotol.ama-assn.org/cgi/content/full/131/10/886/00A50057F3

Airway devices

- **Endotracheal jet catheter**
 - translaryngeal ventilation
 - microlaryngeal surgical procedures

Click to see jet ventilation catheter & laryngoscope
http://www.anesthesiology.org/content/90/2/460/F1.large.jpg

Click to see intubation with Hunsaker Mon-jet™ tube (1.2)
http://www.youtube.com/watch?v=51Y9Oxr7Dw
Airway devices
- Univent™ tube - bronchial blocking tube intended for single lung ventilation

HFJV Patient Management

Airway Management
- Suctioning - needed more frequently during initial hours on jet ventilation.

Initiation
- Patient already on conventional or oscillatory ventilation
- Follow Bunnell startup procedure, including attachment of LifePort adapter

FYI - Click to bookmark Bunnell Life Pulse™ slides and videos

Ventilator Control Adjustment
- Companion controls
 - FIO2 - both ventilators
 - PIP or TV, as previously adjusted
 - Rate
 - weaned to zero, as tolerated
 - desaturation during weaning indicates need for greater MAP
 - PEEP - adjust to maintain MAP
 - Oxygenation maintained with:
 - FIO2
 - MAP

Click for simulated Bunnell Life Pulse™ controls
http://www.bunl.com/Interactive-Life-Pulse.html

Ventilator Control Adjustment
- Jet controls
 - On time
 - Rate
 - PIP - adjusts TV (delta P)
Jet Control Adjustment

- **On time**
 - defaults to 0.02 sec.
 - usually left on default setting
 - at lowest rate (240) I:E = 1:12

- **Rate (240-660)** - not the primary control for PaCO2
 - typical jet rate > 10 times CMV rate
 - for small infants, start at 420/min
 - lower rates for:
 - larger infants
 - PIE
 - meconium aspiration
 - gas trapping, reversal of which may decrease PaCO2

Jet Control Adjustment

- **PIP - control over PaCO2**
 - adjusts TV (delta P)
 - with HFV, VE = f x TV^2 => smaller TV changes have greater effect
 - start with PIP 1-2 cm less than CMV PIP
 - adjust for desired PaCO2
 - transcutaneous CO2 monitor is helpful in adjusting PIP

Ventilation Monitoring

- **Servo pressure**
 - fluctuates like PIP with patient activity and position
 - should change in direction of PIP setting

- **Servo pressure**
 - decreased by:
 - decreased compliance
 - increased resistance
 - obstructed ETT
 - increased by:
 - increased compliance
 - decreased resistance
 - leak in system
 - increased servo P is usually good; but, may indicate leak

- **Proximal-distal pressure difference**
 - jet PEEP display is measured distally
 - CMV PEEP display is measured proximally
 - significant difference between distal and proximal indicates intrinsic PEEP (PEEPi)
 - decrease rate to eliminate PEEPi
Discontinuation
- Condition that precipitated need for HFJV must be resolved before weaning
- Wean slowly
- Maintain MAP for oxygenation

Discontinuation
- Decrease PIP slowly (1-2 cm H2O)
- Decrease PEEP, which controls the MAP, to 8 or less as consistent with adequate oxygenation
- Decrease FIO2 to 30%
- Change to CPAP or nCPAP when PIP < 15 cm H2O and CMV rate at or near CPAP

Case Scenarios

Case One
- 26 wk 700 g BG
- Intubation and surfactant in DR
- Initial ventilator settings TV = 12 mL, rate = 60/min, FIO2 = 60%; PEEP = 6 cm H2O - couldn't wean FIO2
- More surfactant - no changes (RDS)
- Over 36 H, PIP increased from low 30s to 55 cm H2O - see CXR after CMV

Click to see CXR before CMV

Click to see CXR after 36 H on CMV

Case One
- Diagnosis - PIE
- Conventional ventilator: FIO2 = 60%; MAP = 22 cm H2O; PIP = 55 cm H2O
- Initial settings for jet ventilation:
 ◆ Companion: FIO2 = 60%; PEEP = 12 (for MAP = 22); rate = 5/min
 ◆ Jet: FIO2 = 60%; PIP = 50 cm H2O; rate = 420/min; On time = .020
- ABGs: PaO2 = 60 mm Hg; SaO2 = 93%; PaCO2 = 35 mm Hg; pH = 7.42
- Over 24 H, FIO2 decreased to 42% and PIP decreased to 40 cm H2O
- PIE resolving on radiograph

Case One
- ABGs: PaO2 = 60; SaO2 = 93%; PaCO2 = 35; pH = 7.42
- Ventilator adjustments:
 ◆ Companion rate to zero - SPO2 decreased, increased MAP to 23 cm H2O with SPO2 rebound
 ◆ decreased PIP to 47 cm H2O, PCO2 increased to 36 mm Hg
- Over 24 H, FIO2 decreased to 42% and PIP decreased to 40 cm H2O
- PIE resolving on radiograph
Case One

- At 48 H on jet: ABGs: PaO2 = 70; SaO2 = 95%; PaCO2 = 32; pH = 7.46
- FIO2 weaned to 30%
- PIP weaned to 10 cm H2O
- PEEP weaned to 8 cm H2O
- Patient stable on CPAP 8 cm H2O; FIO2 = 30%
- Extubated to nCPAP

Case Two

- 41 wk, 3500 g BB
- Delivered with meconium in amnion and in upper airways
- Intubated, suctioned through ETT
- Lavaged with surfactant
- Placed on nCPAP = 6; FIO2 = 35%; SpO2 = 89% then to NICU
- 6 H later, SpO2 decreased and RR increased to 80/min

Click to see a radiograph of MAS http://img.medscape.com/fullsize/migrated/437/101/fp1206.04.fig1.jpg

Case Two

- Placed on volume-control ventilator with FIO2 = 50%; TV = 22 mL; rate = 40/min; PEEP = 6 cm H2O; PIP = 48 cm H2O; MAP = 18 cm H2O
- ABGs: PaO2 = 45 mm Hg; SaO2 = 81%; PCO2 = 76 mm Hg; pH = 7.18
- Changed to jet ventilator
- Settings??

Case Two

- Initial settings for jet ventilation
 - companion FIO2 = 60%; PEEP = 8 cm H2O for MAP = 18 cm H2O; rate = 5/min
 - jet FIO2 = 60%; rate = 360/min; PIP = 46 cm H2O
- ABGs: PaO2 = 42 mm Hg; PaCO2 = 75 mm Hg; pH = 7.10

Case Two

- Ventilator adjustments
 - companion PEEP increased to 10 cm H2O for MAP = 20 cm H2O; rate decreased to zero
 - jet rate decreased to 240/min
- ABGs: PaO2 = 59 mm Hg; SaO2 = 91%; PaCO2 = 55 mm Hg; pH = 7.27
- CXR - less hyperinflation
- Note: increased PIP might decrease PaCO2; but decreased rate worked by decreasing I:E

Case Two

- Over two days, CXR improved and patient stable on FIO2 = 38%; PIP = 22 cm H2O; PEEP = 8 cm H2O
- PIP weaned to zero; FIO2 weaned to 30% with patient stable
- Patient extubated to nCPAP
Summary & Review

- HFV types
- HFJV definition and types
- HFJV rationale
- Mechanisms for gas transport
- HFJV indications
- HFJV complications

Summary & Review

- Jet ventilators
 - Bunnell LifePulse™
 - Accutronics
 - Mistral™ - short-term only
 - Monsoon™
 - Bunnell controls
 - rate
 - PIP
 - on time

Summary & Review

- Jet airway devices
 - Bunnell LifePort™
 - triple-lumen jet endotracheal tube
 - cricothyrotomy catheter
 - translaryngeal catheter

Summary & Review

- HFJV management
 - control adjustments
 - oxygenation - MAP, FIO2
 - PaCO2 - PIP (delta P)
 - rate - decreased for air-trapping
 - monitoring
 - servo P
 - distal - proximal pressure difference
 - discontinuation

References

- Woodruff, K. Personal communications pertaining to Bunnell Life Pulse 2010.

References

References

- Stewart DL, Dela Cruz TV, Duncan SD, Cook LN. Response to high frequency jet ventilation may predict the need for extracorporeal membrane oxygenation. Eur Respir J. 1996 Jun;9(6):1257-60.