Lung Protective Strategies

Arthur Jones, EdD, RRT

http://rc-edconsultant.com/

Learning Objectives:
- Outline the pathogenesis and pathophysiology of ventilator-induced lung injury.
- Examine the mechanisms by which lung protective strategies can prevent ventilator-induced lung injury.
- Discuss the effects, procedures, advantages, disadvantages and evidence for effectiveness pertaining to the following lung protective strategies:
 - open lung concept
 - pressure-controlled inverse ratio ventilation
 - dual level continuous positive airway pressure
 - permissive hypercapnea
 - tracheal gas insufflation
 - prone positioning
 - high-frequency ventilation
 - nitric oxide
 - partial liquid ventilation

Lung protective strategies

- Rationale: ventilate & oxygenate without ventilator-induced lung injury (VILI)

Ventilator-induced lung injury

- VILI: injury to the lung caused by mechanical ventilation
 - mechanical injury
 - volutrauma, overdistending lung units, causing leaks
 - atelectrauma: repetitive opening of ‘sticky’ alveoli
 - hyperoxia: oxidant injury to lung

Ventilator-induced lung injury

- VILI: injury to the lung caused by mechanical ventilation
 - inflammation
 - biotrauma, due to release of mediators of inflammation
 - leads to multiple organ system failure
Ventilator-induced lung injury

- Targets
 - alveolar cells
 - alveolar capillaries
 - pulmonary fibrous network

- Types of damage
 - alveolar cells
 - inflammation, due to cytokine release
 - abnormal surfactant production
 - alveolar capillaries
 - increased resistance to blood flow
 - increased permeability - edema

- Problem - non-uniform pathology in ALI/ARDS
 - High pressure to inflate stiff units stretches normal units

- Specific causes
 - excessive tidal volume - stretch
 - deficient end-expiratory pressure - atelectrauma
 - hyperoxia
 - excessive rate
 - excessive inspiratory flow

- In patients with ARDS, inflammatory response may occur after 2 hours of excessive TV with hyperoxia

- Lung protective strategies should address all of these
 - tidal volume
 - end-expiratory pressure
 - hyperoxia
 - rate
 - inspiratory flow
Lung Protective Strategies

- Open the lung and keep it open, with minimal stress.
- Avoid de-recruitment (alveolar collapse)
- Ventilate at greatest compliance

Best Compliance Zone

- Tidal volume <7 mL/kg IBW
- Optimal PEEP
 - recruits alveoli
 - prevents de-recruitment
 - moves edema from airways
- Recruitment maneuvers (RM)

Open Lung Concept

Optimal PEEP level with greatest:
- Static lung compliance (Cst)
- Mixed venous PO2, SO2

Methods for optimal PEEP
- LIP on VP curve- plus 2-3 cm H2O
- incremental PEEP with compliance measurement
- decremental PEEP with compliance measurement
- alternate method (Mercat et al)

FYI - Link to predicted body weight chart
http://www.ardsnet.org/system/files/pbwtables_2005-02-02_0.pdf
Open Lung Concept
- Alternate method for PEEP
 - TV = 6 mL/kg IBW
 - PEEP increased to Ppt = 28-30 cm H2O

Open Lung Concept
- Recruitment maneuver - high level CPAP
 - Rationale - recruit and re-recruit alveoli PRN
 - CPAP 30-40 cm H2O for 30-90 sec

Click to see video of lung recruitment
http://www.youtube.com/watch?v=oKH7CtsEgHw

Open Lung Concept
- Recruitment maneuver
 - Indications
 - early in ALI, ARDS
 - after ventilator disconnections
 - desaturation

Open Lung Concept
- Recruitment maneuver
 - Procedure
 - FIO2 100%
 - CPAP 30 cm for 30-40 sec
 - if first RM tolerated, after 15-20 min. repeat at 35-40 cm
 - may repeat, if tolerated

Pressure controlled inverse ratio ventilation (PCIRV)
- PCV limits volutrauma, because small TV is delivered
- inverse I:E prolongs time for recruitment, limiting time for de-recruitment
- early application in ALI/ARDS permits decreasing FIO2 and improves patient outcomes

PCIRV
- History
 - Initially used for neonates (1972), using Bennett PR-2 ventilators
 - Subsequent application for neonates resulted in VILI
PCIRV

- **History**
 - Initially used for neonates (1972), using Bennett PR-2 ventilators
 - Subsequent application for neonates resulted in VILI
 - Applied to adults in 1980s, using Siemens 900C
 - Subsequent applications for adults resulted in VILI
 - Flow pattern made the difference

- **Indication**
 - ARDS, ALI

- **Advantages:**
 - Minimal volutrauma
 - Maximal time for alveolar recruitment
 - Minimal time for alveolar derecruitment

- **Disadvantages**
 - Patient asynchrony, discomfort
 - Requires sedation, paralysis
 - Hemodynamic compromise, usually manageable with fluid administration.
 - IRV with pressure-controlled, volume guarantee may be equally effective, depending on inspiratory flow pattern.

PCIRV

- **Flow pattern**:
 - Square pressure waveform
 - Decelerating flow wave

Dual level CPAP

- **Not a new mode**—studied by Downes, (1987)
- Two levels of CPAP, with time-triggered, time-cycled pressure release and spontaneous breathing.
- May be perfect mode for ALI/ARDS in spontaneously breathing patients.

FYI - Link to article on APRV
http://www.thoracicmedicine.org/article.asp?pii=1071-2225;year=2007;volume=2;issue=4;spage=176;epage=179;aulast=Daoud

Dual level CPAP

- Baseline
- Spontaneous
- Time (sec.)
Indication - acute lung injury

Advantages
- Lower peak, plateau pressures
- Spontaneous breathing
- Recruitment, with limited opportunity for de-recruitment
- Improved V/Q matching
- Minimal adverse circulatory effects

Disadvantages
- Asynchrony with spontaneous breaths (probably unimportant)
- Unfamiliarity of staff with technique
- Limited research

Ventilator settings
- Pressure High below UIP (20-30 cm H2O)
- Pressure Low above LIP (0-5 cm H2O)
- Time High 4-6 sec.
- Time Low 0.2-0.8 sec.

Availability
- Drager ventilators
- Siemens Servoi
- Hamilton ventilators
- Puritan-Bennett 840
- GE Engstrom Carestation

Permissive hypercapnea
- PCO2 permitted to rise rather than increase ventilator settings
- Prevents volutrauma
- Elevated CO2 may inhibit inflammation

Precautions
- Superimposed metabolic acidemia
- Cerebral edema
- Hypovolemia
- Beta blockade

FYI - Link to article on CO2 and acute lung injury
http://erj.ersjournals.com/cgi/reprint/20/1/6
Permissive hypercapnea

- Acidemia may be reversed with tromethamine (THAM)
 - proton acceptor
 - does not depend on CO2 excretion to increase pH

FYI - Link to article on THAM and permissive hypercapnia
http://ajrccm.atsjournals.org/cgi/content/full/162/4/1361

Tracheal Gas Insufflation (TGI)

- Continuous flow of gas in trachea to wash out CO2
- Safety issues are concerns
- Equipment issues (circuits) are concerns
- Interactions with ventilator triggers, etc.

Prone positioning

- Effects:
 - may increase FRC
 - increased secretion drainage - may be the primary benefit
 - improved VQ equality
 - increased effects of RMs
 - may decrease VILI

FYI - Link to article on pragmatics of pronation
http://ajrccm.atsjournals.org/cgi/content/full/165/10/1359

Precautions:

- tracheostomies
- chest tubes
- obesity, abdominal distension
- pregnancy
- ventral surface lesions
- pelvic, spinal lesions

Precautions:

- physically difficult to achieve with many patients
- pronation reduces chest wall compliance - patients on PCV will need increased PIP.
- pronation may cause secretion drainage from mouth and ETT - be prepared for it.

FYI - Link to article on pragmatics of pronation
http://ajrccm.atsjournals.org/cgi/content/full/165/10/1359

Disadvantages/adversity

- pressure injury to face
- misadventures
- personnel resources - time
Prone positioning
- Status of research findings
 - short-term improvement in oxygenation
 - no improved outcomes for adults or children
 - pronation must be applied early and be prolonged (>16 H) to be effective.

FYI - click for abstract of 2013 study on prolonged pronation for ARDS

High frequency ventilation
- Ventilation at high rates, low tidal volume, high MAP
- Types:
 - HFJV- TV > VD_{AN}
 - HFOV- TV < VD_{AN}

High frequency ventilation
- Advantages:
 - minimal TV prevents volutrauma and stretch
 - ventilate in presence of large leaks
- Disadvantage
 - expense- equipment, training

Nitric Oxide
- Action- dilates pulmonary vessels for ventilated alveoli, improving VQ matching
- FDA approved only for persistent pulmonary hypertension in newborns

Nitric Oxide
- Action- dilates pulmonary vessels for ventilated alveoli, improving VQ matching
- FDA approved only for persistent pulmonary hypertension in newborns
- Use for other conditions is off-label and may not be paid for
- Very expensive:
 - equipment, NO gas
 - training
Nitric Oxide

- Status of research
 - temporary improvement in oxygenation
 - no improvement in outcomes
- Inhaled prostacyclin is as effective and less expensive

Additional strategies

- surfactant
 - reduced mortality among children with ARDS
 - adults
 - volume required - expense
 - inconsistent research results
 - aerosolized lucinactant under study

Additional strategies

- partial liquid ventilation - very expensive
- anti-inflammatory nutrition - borage oil
- antioxidant therapy - n-acetylcysteine

Partial liquid ventilation

- Lungs filled to FRC with perflubron (LiquiVent), with these properties:
 - high density - flows to dependent areas of lung
 - low surface tension - increases compliance
 - high solubility for O2 and CO2 - transports gases
 - high volatility - quickly excreted

Click to see video of mouse swimming in perfluorobutane (includes strong language)
http://www.youtube.com/watch?v=1NAU8Iz6aXE

Partial liquid ventilation

- Physiologic effects:
 - increased lung compliance, due to:
 - decreased surface tension
 - alveolar recruitment
 - decreased VILI due to increased compliance
 - decreased shunt due to alveolar recruitment & diffusion across perfluorobutane

Partial liquid ventilation

- Potential applications:
 - RDS - neonates
 - meconium aspiration - not effective for adults
 - ALI/ARDS
Partial liquid ventilation

- Procedure
 - perflubron instilled to FRC
 - re-instillation required, due to evaporation

Partial liquid ventilation

- Research findings
 - neonates - non-responders to surfactant survived (n = 10)
 - adults - most recent trial (2006) found negative for PLV
 - earlier trials did not compare PLV with lung protective ventilation

FYI - Click to download article on PLV for neonates with RDS
http://content.nejm.org/cgi/content/full/335/11/761
FYI - Click to download article on PLV for adults with ARDS
http://ajrccm.atsjournals.org/cgi/reprint/173/8/882

Partial liquid ventilation

- Barriers to adoption
 - expense
 - perflubron
 - time - dosing, redosing
 - lack of positive research findings

- Opinion - PLV will not become a widely-used technique, at least for adults

Summary & Review

- VILI mechanisms
 - atelectrauma
 - volutrauma
 - inflammation

- Lung protection
 - alveolar recruitment
 - avoid stretch

Summary & Review

- Lung protective strategies
 - Low TV, optimal PEEP, RMs
 - Pressure-controlled inverse ratio ventilation
 - Dual level CPAP (APRV)
 - Tracheal gas insufflation
 - Prone positioning
 - High-frequency ventilation
 - Nitric oxide

References

References

- Thomas Dyhr, Jan Bonde and Anders Larsson. Lung recruitment manoeuvres are effective in regaining lung volume and oxygenation after open endotracheal suctioning in acute respiratory distress syndrome.