Neonatal Pulmonary Conditions

Arthur Jones, EdD, RRT

http://rc-edconsultant.com/

Learning Objectives:
- Explain the etiologies, pathophysiology and management of common neonatal conditions.
- Explain the pathogenesis, prevention and management of iatrogenic neonatal conditions.

Neonatal asphyxia

- **AKA-** asphyxia neonatorium
- **Definition**- failure of an infant to cry or breathe well after delivery.
- **Neonatal asphyxia may be a continuation of fetal asphyxia**

<table>
<thead>
<tr>
<th>Etiologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal hypoxia</td>
</tr>
<tr>
<td>Maternal anesthetics</td>
</tr>
<tr>
<td>Cord pathology</td>
</tr>
<tr>
<td>Meconium aspiration</td>
</tr>
<tr>
<td>Abruptio placentae</td>
</tr>
<tr>
<td>Multiple birth</td>
</tr>
<tr>
<td>Dystocia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoxemia</td>
</tr>
<tr>
<td>Acidemia</td>
</tr>
<tr>
<td>Hypercapnia</td>
</tr>
<tr>
<td>Bradycardia</td>
</tr>
<tr>
<td>Observations that add up to a low Apgar score</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDS</td>
</tr>
<tr>
<td>hypoxic-ischemic encephalopathy</td>
</tr>
<tr>
<td>persistent fetal circulation</td>
</tr>
<tr>
<td>necrotizing enterocolitis</td>
</tr>
</tbody>
</table>
Neonatal asphyxia
- Management - resuscitation
 - Dry & warm the patient
 - Oxygen - room air not effective*
 - Ventilation
 - NaHCO₃
 - Glucose

Respiratory distress syndrome
- Disease of pulmonary immaturity
 - Severity associated with low birth weight
 - Immature lung deficient in surfactant
 - Immature lung has insufficient alveoli for gas exchange
 - Lungs usually mature at 35 weeks

Respiratory distress syndrome
- Prediction - lab fetal lung profile
 - Principal constituent of surfactant - lecithin
 - Low lecithin levels ==> early gestation
 - After 35 weeks L:S > 2 ==> OK surfactant
 - Infants of diabetic mothers (IDM) - require phosphatidyl glycerol (PG), a more sensitive test

FYI - Link to more information about fetal lung profile
http://www.mayomedicallaboratories.com/test-catalog/Clinical-and-Interpretive/8929

Surfactant activity
- Atelectasis
 - Compliance
 - WO
 - RR
 - PaCO₂
 - PaO₂
 - VQ defects
 - Metabolic acidemia
 - Combined acidemia
 - Pulmonary vasoconstriction
 - PFO & R = L anatomic shunt

- Surfactant deficiency
 - Alveolar necrosis

Capillary damage
RDS Manifestations
- Hypoxemia, hypercapnia, acidemia
- Tachypnea
- High Silverman respiratory distress score:
 - asynchrony of upper & lower chest
 - retractions- xiphoid, lower chest
 - nasal flaring
 - grunting
- Fine crackles

Click to see Downes and Silverman scoring systems
http://members.tripod.com/puffnicu/rd.html

RDS Chest Radiograph
- massive atelectasis
- "ground glass"
- air bronchograms

Click to see chest Xray of RDS with air bronchograms

RDS treatment- break the cycle
- >28 wks- CPAP*
- <28 wks- intubate & ventilate
- Continuous mechanical ventilation
 - Gentle ventilation (permissive hypercapnia)
 - PCIRV- first used on neonates
 - High-frequency oscillation

RDS Treatment
- Exogenous surfactant
 - treatment
 - prophylaxis for at-risk infants
 - preparations:
 - curosurf (pork lung)
 - beractant (bovine lung)
 - calfactant (calf lung)
 - lucinactant (Surfaxin)- synthetic-instilled or aerosolized

RDS- Prevention
- Accurate prediction, index of suspicion
 - Stop labor- terbutaline, Ritudrine
 - Administer steroids to mom to speed fetal lung maturation.
 - Cocaine and tobacco use also speed lung maturation

Click for consensus on steroids for fetal lung maturation

Meconium aspiration syndrome
- Aspiration of fetal stool
- Predisposing factors
 - fetal asphyxia
 - post-maturity
 - oligohydramnios- deficient amniotic fluid
Meconium aspiration syndrome

Onset
- May occur prior to labor
- Asphyxia ==> relaxation of anal sphincter
- Increased peristalsis
- Fetal gasping
- Asphyxia continues in extrauterine state

Complications
- RDS
- Extraneous air; e.g., pneumothorax
- Hypoxemia ==> encephalopathy
- Persistent pulmonary hypertension
- Pneumonia

Types of obstruction
- Check valve- air entry-- no exit ==> distal hyperinflation (emphysema)
- Stop valve- no air movement ==> distal atelectasis

Meconium aspiration syndrome

Complications
- RDS
- Extraneous air; e.g., pneumothorax
- Hypoxemia ==> encephalopathy
- Persistent pulmonary hypertension
- Pneumonia

Stop valve obstruction

Check valve obstruction

Meconium ==> inflammation ==> pneumonitis ==> pneumonia

Hypoxia ==> pulmonary vasoconstriction ==> PPHN
MAS- Manifestations
- Meconium-stained amniotic fluid and neonate
- Hypoxemia
- Tachypnea, gasping
- Hyperexpansion ==> bulging intercostal spaces
- Rhonchi, crackles

MAS- Manifestations
- Chest radiograph
 - mixed densities, hyperexpansion
 - commonly associated with pneumothorax

Click to see article with chest radiographs of MAS
http://www.emedicine.com/radio/TOPIC426.HTM

MAS- treatment
- All newborn mouths suctioned with bulb syringe before thorax is delivered
- Thin meconium- may require no further treatment

MAS- treatment
- Thick meconium
 - Avoid PPV, because it worsens condition
 - Laryngoscopy- meconium below cords
 - Intubate
 - Deep, tracheal suctioning with meconium aspirator

MAS- Treatment
- Surfactant lavage
 - Survanta
 - Surfaxin
- Mechanical ventilation
 - Lung protective strategies
 - HFOV
- Extracorporeal membrane oxygenation (ECMO)

MAS- management
- NICU care
 - CPT- NOT
 - Antibiotics for pneumonia
 - Suctioning
 - Treatment for PPHN
Persistent pulmonary hypertension

- **Etiologies**
 - hypoxemia
 - congenital - abnormal vasoactivity

- **Associated conditions**
 - RDS
 - MAS
 - Asphyxia
 - Diaphragmatic hernia

Pre and post-ductal blood flow

- **Left-right shunt- absence of PPHN**
 - Normal pre-ductal PaO2 (right arm, head)
 - Left arm PaO2?
 - Increased mixed venous PO2

- **Right-left shunt with PPHN**
 - Decreased post-ductal PaO2

Persistent pulmonary hypertension

- **Manifestation- severe, refractory hypoxemia (right-left shunt)**

- **Diagnosis**
 - Echocardiography shows shunt
 - Hyperoxia test- 100% O2 shows shunt
 - Pre & post-ductal test >20 mm Hg difference
 - Hyperoxia-hyperventilation
 - PaCO2 < 25 ==> 100 mm Hg increase in PaO2

Persistent pulmonary hypertension

- **Treatment**
 - Hyperventilation- conventional
 - High frequency ventilation
 - Medications
 - tolazoline
 - nitric oxide
 - prostacyclin (Flolan)
 - ECMO- non-responders
Transient tachypnea of the newborn (TTN)
- **Etiology & onset- term newborns**
 - Failure to expel fetal lung fluid ==> cesarean-section delivery
 - Signs appear at birth, or shortly afterward

TTN- Pathophysiology
- Retained fetal lung fluid ==>
 - Obstruction (mild)
 - Mild hypoxemia, hypercapnia, acidemia

TTN- Manifestations
- Tachypnea
- Grunting
- Cyanosis
- Differentiate from:
 - Pneumonia
 - CHF (cardiomegaly)

TTN- CXR
- Generalized overexpansion
- Hilar streaking

Click for radiograph of TTN
http://radiopaedia.org/images/218523

TTN- Management
- Oxygen
- Supportive care
- Usually clears within days
- Albuterol aerosol - reduces edema*

*Reference

Apnea
Apnea and periodic breathing

- Periodic breathing
 - apnea < 15 sec.
 - no bradycardia, cyanosis
 - reverse spontaneously

- True apnea (primary)
 - Associated with prematurity & BW < 1800g
 - duration >15 sec.
 - Associated with bradycardia, cyanosis
 - Reversible with stimulation of patient

- Secondary apnea
 - Sequel to untreated primary apnea
 - Irreversible with stimulation
 - Immature respiratory centers
 - Blunted response to CO2
 - Hypoxemia depresses ventilation

- Treatment
 - mild stimulation
 - oxygen (23-25%)
 - xanthines- theophylline, caffeine
 - CPAP
 - ventilation for secondary apnea

Etiologic factors in apnea

- Prematurity- immature chemoreceptors
- Anatomic obstruction
 - cranial malformations
 - airway anomalies
- CNS lesions
- Hyper/hypo-thermia
- Abdominal distension; e.g., necrotizing enterocolitis (NEC)
Iatrogenic Conditions

Bronchopulmonary dysplasia (BPD)
- Definition: infant requires supplemental O2 at one week still O2 dependent at 28 D has BPD
- progressive chronic lung disease in infants following periods of mechanical ventilation

BPD- Etiologic Factors
- Pulmonary immaturity-- lung vulnerable to insult
- FIO2 > .21 x time
- Endotracheal tube
- Positive pressure ventilation
- PDA-increases pulmonary blood flow
 ==> reduced CL ==> need for increased PIP

BPD- Etiologic Factors
- BPD can be predicted in very low birthweight by a small thymus gland on the chest radiograph*
 - identifies impaired immune function
 - BPD may not be preventable

FYI - Link to function of thymus gland
http://www.intech.mnsu.edu/angelamonson/DH319/Short%20Papers/thymus_gland_1.htm

BPD- clinical course
- Stage I- precipitating dx
 - refractory hypoxemia
 - increased level of ventilatory support
 - pulmonary inflammation
- Stage II
 - diffuse atelectasis- opaque CXR
 - pulmonary edema- common
 - PDA- common

BPD- clinical course
- Stage III
 - some improvement
 - pulmonary cystic changes
 - continued O2 dependence
 - hypercapnia- common
 - airway hyperreactivity
BPD- clinical course

- Stage IV-- chronic
 - cardiomegaly
 - hyperexpansion, interspersed with fibrosis
 - bronchiolar smooth muscle hypertrophy
 - tracheotomy often required

BPD- manifestations

- history of ventilation with O2
- chronic hypoxemia
- chronic hypercapnia
- wheezing
- hyperinflation
- reversible (usually) airway obstruction
- cardiomegaly

BPD- manifestations

- chest radiograph

Click to see chest radiograph of BPD

Click to see chest radiograph of 15 YO with BPD
http://www.hawaii.edu/medicine/pediatrics/pemxray/v3c02.html

BPD- management

- Minimal, gentle ventilation
- Cautious O2 therapy
 - too much- apnea
 - too little- cyanosis, apnea

BPD- management

- Bronchodilators-- if reversible
 - clinical signs
 - pre-post pulmonary mechanics: R_{AW}, C_{DYN}, flow-volume curve
 - MDI- albuterol and/or Atrovent
- Inhaled steroids- NOT
- Prevent infection

BPD- management

- Furosemide (Lasix)
- Digoxin
- Theophylline
- Caffeine
- Nutrition- development of new alveoli
- Home care- for stage IV patients
BPD Prevention

- Gentle ventilation
- Avoid fluid overload, CHF
- Antioxidants??
- Exogenous surfactant*

Extraneous Air Syndromes

- air, where air should not be.

Pathogenesis

- PPV ruptures alveoli
- air enters perivascular sheath
- alveolar perivascularature (PIE)
- reduced CL
- need for increased PIP
- extraneous air

Extraneous Air Syndromes

- Pathogenesis

PIE Manifestations

- Progressive hypoxemia
- Decreasing compliance
- increased PIP required for ventilation
- Diagnosed by CXR

Extraneous Air Syndromes

- Affected sites
 - Pleura-- blebs, pneumothoraces
 - Subcutaneous tissue
 - Mediastinum-- pneumomediastinum
 - Intravascular, intracardiac spaces-- air embolus
 - Pericardium
 - Cerebral vessels- cerebral air embolism

Extraneous Air Syndromes

- Pathogenesis

PIE- Manifestations

- Progressive hypoxemia
- Decreasing compliance
- increased PIP required for ventilation
- Diagnosed by CXR
PIE - Manifestations
➤ CXR

Click to see article with radiographs of PIE
http://www.emedicine.com/ped/topic2596.htm#Multimedia1

PIE - Management
➤ Minimize PIP
➤ HFOV
➤ Intubate unaffected side
➤ Affected side positioned down
➤ Intermittent 100% O₂

Retinopathy of Prematurity (ROP)
➤ Retinal disease - vision impairment
➤ Etiology
✓ ROP is due to immaturity of retina
✓ Increased incidence of ROP is due to increased survival of infants
BW < 1 Kg

Retinopathy of Prematurity (ROP)
➤ Prevention - maintain PaO₂ < 100
➤ Patients who were never on O₂ have developed ROP
➤ Management
✓ Laser surgery
✓ Intravitreal bevacizumab (Avastin)
- Prevents vascular proliferation

Retinopathy of Prematurity (ROP)
➤ Pathology with hyperoxia
PaO₂ > 100 ==> retinal vasoconstriction ==> necrosis of vessels ==> proliferation of new vessels ==> extend into vitreous humor ==> hemorrhage ==> scar ==> retinal detachment ==> blindness

Retinopathy of Prematurity (ROP)
➤ Etiology
✓ ROP may not be preventable
✓ 20-40% neonates with birth weight < 1 kg have ROP
✓ Aggravated by hyperoxia

FYI - Click for article on Bevacizumab (Avastin) and ROP
http://www.presstv.ir/detail/166016.html
Airway, Esophageal & Abdominal Anomalies

Choanal atresia
- obstructed nasopharynx - may be soft tissue or bone
- Infant is obligate nose breather ==> severe distress
- Bag-mask ventilation produces temporary recovery

Choanal atresia
- Diagnosis - inability to pass catheter through nares to pharynx
- Treatment
 - temporary oropharyngeal airway
 - intubation
 - surgical correction

Tracheoesophageal (TE) fistulae
- Esophageal atresia without TE fistula

Tracheoesophageal (TE) fistulae
- Esophageal atresia with proximal fistula

Tracheoesophageal (TE) fistulae
- Esophageal atresia with distal fistula (most common)
Tracheoesophageal (TE) fistulae

- Esophageal atresia with proximal and distal fistulae

Tracheoesophageal (TE) fistulae

- Tracheoesophageal fistula without esophageal atresia (H-type)

TE Fistula- Manifestations

- Depends on type
- Accumulation of oral secretions
- Regurgitation of feedings
- Respiratory distress

TE Fistula

- Complications
 - Aspiration
 - Distension/rupture of stomach with positive-pressure breathing
 - Failure to feed

TE Fistula

- Management
 - Hold oral feedings
 - Surgical correction- atresias may recur

TE Fistula

- Associated anomalies
 - vertebral
 - anal
 - cardiac
 - tracheal
 - esophageal
 - renal
 - limb
Miscellaneous Airway Anomalies
- Vocal cord paralysis
- Laryngeal web
- Vascular ring (around trachea)
- Pierre Robin syndrome
 - micrognathia
 - glossoptosis
- Treacher-Collins syndrome

Congenital Diaphragmatic Hernia (CDH)
- **Etiology & onset**
 - Etiology-- incomplete embryonic development of diaphragm.
 - Distress at birth or shortly thereafter
 - Some are not diagnosed until childhood

Congenital Diaphragmatic Hernia
- **Pathophysiology & course**
 - Abdominal contents compress lung
 - Left-sided (most common)-- intestines
 - Right-sided-- liver

 - Suspected in presence of polyhydramnios
 - Detected in utero by ultrasound
 - Severity depends on how much lung is compressed
 - Lung on affected side may be hypoplastic

 - Respiratory distress- worsens with bag-mask ventilation due to inflation of bowel
 - Absent breath sounds or presence of bowel sounds on affected side
 - Shift in point of maximal impulse
 - Need to differentiate from pneumothorax

[Click for more information and illustrations of CDH](http://www.nlm.nih.gov/medlineplus/ency/article/001135.htm)
Congenital diaphragmatic hernia

- Management
 - Avoid bag-mask ventilation
 - Immediate intubation, ventilation
 - Conventional ventilation
 - HFOV
 - ECMO- severe cases
 - Surgical correction

Click for radiographs of diaphragmatic hernia
http://www.mypacs.net/cases/DIAPHRAGMATIC-HERNIA-6159020.html
http://www.hawaii.edu/medicine/pediatrics/neoxray/neoxray.html

Omphalocele

- protrusion of viscera, covered by peritoneum through umbilical area
- Associated with other anomalies
 - prune belly
 - congenital heart disease (TOF)

FYI - Link to index of pictures of congenital anomalies
http://library.med.utah.edu/WebPath/PEDHTML/PEDIDX.html#1

Gastroschisis

- uncovered bowel protruding through abdominal wall
- Not associated with other anomalies
- Causes extrathoracic restriction
- Bowel slowly pushed into abdomen

Click to see gastroschisis
http://library.med.utah.edu/WebPath/PEDHTML/PED007.html

Congenital Emphysema

- Etiology uncertain-- weak bronchial support, with dynamic compression
 ==> air trapping
- Pathophysiology-- hyperinflation of lobe
 ==> compress lung segments
 ==> V/Q defects

Congenital diaphragmatic hernia

- Associated with elevated maternal serum alpha fetoprotein
- Visualized on ultrasound
- Causes extrathoracic restriction
- Repaired by pushing viscera into abdominal cavity

Click to see omphalocele
http://library.med.utah.edu/WebPath/jpeg3/PERI110.jpg
Manifestations

- Signs and symptoms may appear later
- Tachypnea - distress
- Cyanosis
- Wheezing - mistaken for asthma
- Intercostal bulging on affected side

Click to see radiograph of congenital emphysema
http://radiographics.rsna.org/cgi/content-nw/full/24/1/e17/F16B

Congenital Emphysema

- Management
 - Ventilatory support
 - Surgical resection

Summary & Review

- Neonatal asphyxia
 - hypoxemia, acidemia, hypercapnia
 - complications
- Respiratory distress syndrome
 - surfactant deficit & immature lung units
 - pathophysiologic cycle
 - treatment - surfactant

Summary & Review

- Meconium aspiration
 - initially, no PPV
 - obstruction types - non-uniform dx
- Persistent pulmonary hypertension
 - cause - hypoxemia
 - pre- post-ductal O2 differences
 - treatment - NO, Fiolan

Summary & Review

- Transient tachypnea of newborns
 - cesarean section, term babies
 - mild, self-limited
- Apnea in neonates
 - periodic breathing
 - apnea - primary and secondary

Summary & Review

- bronchopulmonary dysplasia
 - immature lung, vulnerable to injury
 - manifestations like COPD
 - resolution - growth of new lung units
- extraneous air
 - due to PPV
 - pulmonary interstitial emphysema
- retinopathy of prematurity
 - not preventable
 - maintain PaO2 less than 100 mm
Summary & Review

Airway anomalies
- choanal atresia - blocked nasal passage
- tracheoesophageal fistula-atresia
- Congenital diaphragmatic hernia
 - distress with bag-mask ventilation
 - hypoplastic lung - severity
 - may require ECMO

Omphalocele, gastroschisis
- bowel outside abdomen
- thoracic restriction with management
- Congenital lobar emphysema
 - resembles asthma, pneumothorax
 - ventilation until surgical correction

END