Learning Objective:
- Explain special techniques and describe selected devices for respiratory and environmental management of neonates.

Oxygen therapy
- Indication for newborn:
 - PaO2 < 60 mm Hg
 - SaO2 < 90%
 - Except in the presence of:
 - ductal dependent cardiac anomaly
 - left-to-right anatomic shunt

Oxygen therapy
- Associated complications
 - bronchopulmonary dysplasia (BPD)
 - retinopathy of prematurity
 - oxygen-induced hypoventilation
 - closure of DA with ductal-dependent anomaly ==> sudden death

Oxygen therapy
- Requirements for newborns
 - Precise, low-flow delivery - term newborn inspiratory flow = 3-6 L/min
 - Appliances small enough to fit
 - Minimal deadspace
 - Minimal noise production
 - Oxygenation monitoring
 - PaO2 < 80 torr
 - SpO2 low 90s%

FYI - click to see abstract about target SpO2
Infant oxygen hood

- Infants
- FIO2 up to 1.0
- Minimum flow = 7 L/min for CO2 washout

Oxygen Hood

- Equipment
 - Hood
 - sized for infant
 - disposable vs. non-disposable
 - Blender
 - Heated humidifier (NOT nebulizer)
 - maintain 32-34C
 - Thermometer
 - O2 analyzer

Nebulizer should be avoided, due to:
- infection
- noise
- bronchospasm
- reduced viscosity of secretions
- fluid overload

FYI - click for AARC clinical practice guideline on O2 for neonatal and pediatric patients
http://www.rcjournal.com/cpgs/pdf/06.02.707.pdf

Nasal Oxygen

- Cannula or catheter
 - 0.25 L/min ==> FIO2 = 0.24-0.35
 - increments of 0.10 or 0.125 L/min
 - Never use adult range flowmeters

FYI - Click for infant low-flow FIO2 calculator (see menu on left at the web site) Includes downloadable version for PDA
http://www.nicutools.org/

Subambient O2 Therapy

- Goals
 - increase pulmonary vascular resistance
 - prevent closure of ductus arteriosus
- Indication- ductal dependent cardiac anomaly; e.g.:
 - transposition of great arteries
 - tricuspid, mitral atresia
Subambient O2 Therapy

- methods
 - bleed-in nitrogen to ventilator circuit
 - obtain premixed subambient mixture in cylinder
 - titrate FIO2 to SaO2 80-85%
- problem: some O2 analyzers may not measure subambient FO2

O2 analyzers that accurately measure FO2 between 0 and .21
- The Mini-OX III
- Teledyne TED-190

Aerosol Therapy

Aerosolized medications

- Bronchodilators - for reversible obstruction; e.g., BPD
 - albuterol
 - ipratropium
- Furosemide (Lasix)
 - improves lung mechanics
 - no data on outcomes - trials are needed

Inhaled corticosteroids

- do not treat or prevent BPD
- may benefit patients with meconium aspiration
- parenteral dexamethasone (Decadron) after week one may reduce risk for BPD

Agents:
- fluticasone (Flovent)
- budesonide (Pulmicort)

Surfactant

- lucinactant (Surfaxin)
- not FDA-approved (as of 04/09)

Pulmonary vasodilators - replace nitric oxide for pulmonary hypertension

- epoprostenol (Flolan) - continuous administration
- iloprost (Ventavis) - longer acting, intermittent administration
Aerosol generators

- Nebulizer, vs. metered dose inhaler (MDI)
 - equal effectiveness for all patient groups
 - MDI more efficient, less expensive
 - nebulizer necessary for medications that are not available as MDI
 - infants cannot use dry-powder inhalers (DPI)

- wire mesh nebulizer (Aeroneb™) - best for nebulization in ventilator circuits
 - metered dose inhaler
 - valved holding chamber; e.g., Aerochamber
 - tightly fitting mask

Click for video on the Aerochamber™ (2.5)
http://www.5min.com/Video/How-to-Use-an-AeroChamber-160076817

Aerosol delivery interfaces

- ventilator circuit
- mask with valved spacer
- hood - effective, efficient with nebulized medications
- nasal prongs, mask?? - needs study
- blow-by - ineffective

Environments

Rationale for environmental control

- Birth is a traumatic event ==> post-traumatic stress disorder
- Immature organ systems
 - thermoregulatory apparatus
 - auditory, visual organs
 - olfactory - odors are new experience
 - central nervous system
 - immune system
 - epithelium - never been touched

- Threats
 - thermal stress
 - light
 - sound
 - touch
 - odors
 - infection
 - painful procedures - neonates are more sensitive to pain
Goals for environmental control
- Foster physiologic and neurologic development
 - protection from threats
 - nutrition - weight gain

Heat exchange mechanisms
- Conduction - surface contact
- Convection - fluid current
- Evaporation - water evaporation from skin
- Radiation - heat waves to or from distant object (hard to detect)

Preventing heat exchange
- Neutral thermal environment
- Keep infant dry - first resuscitation step
- Insulate contact surfaces
- Keep covered, including the head
- Isolate from air currents
- High ambient humidity (swamp)

Environmental equipment
- Incubator functions
 - isolate from infection, except when contaminated toys are present
 - isolate from noise
 - isolate from light (if covered)
 - provide neutral thermal environment
 - provide ambient humidity - prevents evaporative heat loss

Infant incubator

Environmental equipment
- incubator precautions
 - manipulation can generate serious noise
 - always close the doors
 - drawback - reduced access to infant
 - temperature sensor for servo-controlled humidifier heaters
 - must be outside the incubator
Environmental equipment
- Radiant warmers
 - radiant heat
 - good access to infant
 - drawback - increased exposure
 - need plastic cover

Radiant Warmer
Click to see GE Giraffe™ microenvironments
https://www2.gehealthcare.com/portal/site/usen/menuitem.d9d1e5260a507013d6354a1074c84130/?vgnextoid=9ded3f2ed0530210VgnVCM10000024dd1403RCRD

Environmental equipment
- Plastic wrap/bags
 - effective, inexpensive
 - prevent H2O and caloric loss from convection, evaporation
 - should apply in delivery room so they are in place during transport

Servo - control
- Available for warmers and incubators
- Advantage - adjusts warming to skin temperature
- Precaution - improper placement of probe results in over-warming or underwarming.

Developmental Care
- Rationale - reduce external stimuli that cause:
 - intraventricular hemorrhage (IVH)
 - abnormal neurologic development

Developmental care
- Components:
 - noise reduction
 - light reduction
 - minimal physical stimulation
 - uninterrupted sleep
 - behavior-based care - use cues from neonate guide timing of routine care
Developmental care
- Stimulation of infant avoided during:
 - sleep
 - poor oxygenation
 - inapproachability - gaze aversion, grimace
- Many premature newborns do not like to be touched

Kangaroo care
- Maternal-infant skin contact
 - for medically stable infants
 - reduces crying in response to heel stick (pain reduction?)
 - stabilizes temperature

Developmental care
- Music therapy
 - white noise to protect from NICU sounds
 - may reduce stress

Airway Management

Airways and intubation

Considerations for infants

- Delicate mucosa - easily injured
- Short, narrow trachea
- Cords are anterior & cephalad
- Reduced bronchial angle - left mainstem intubation likely

- Germinal teeth under gums - destroyed by trauma
- Dominant vagal tone - strong response to airway stimulation - bradycardia

Orotracheal, nasotracheal tubes - uncuffed

- Tube sizes
 - 2.0-2.5 <1 kg
 - 3.0 for 1-2 kg
 - 3.5 for 2-3 kg
 - 3.5-4.0 term, appropriate weight for gestational age (AGA)

- 00 Miller for extremely low birthweight (ELBW) infants
- 0 Miller for premies
- 1 Miller for term newborns

Strict caution if stylet is used with infants

- Do not hyperextend neck
- May require anticholinergic to block vagal reflex
- Little margin for error => secure tube firmly
- Small air leak is desirable => minimal pressure damage

Suctioning Guidelines

- Suction only when needed
- Do not use saline routinely
- Do not turn head to suction
- Do not hyperventilate
- Preoxygenate only 10%-15% above ventilator setting, unless severely hypoxemic, then use 100%
Suctioning guidelines

- Insert catheter only 1 cm beyond ETT tip
- Limit total suction time to 10 sec
- Limit vacuum levels - 50-75 mm Hg for infants
- Observe for:
 - bradycardia
 - cyanosis

Chest physiotherapy

- Not indicated for routine care of neonates
 - There is no evidence of benefit
 - There is evidence that it harms neonates; e.g., intraventricular hemorrhage

Continuous Positive Airway Pressure (CPAP)

Definition & rationale

- CPAP - application of positive pressure throughout ventilatory cycle during spontaneous breathing.
- Rationale - maintain the patient's functional residual capacity and prevent airway closure, while avoiding adverse effects of invasive ventilation
- Note - continuous negative extrathoracic pressure is equally effective

Click to see infant negative pressure ventilator

Physiologic effects

- Increases FRC
- Improves V/Q matching ==> reduces shunt
- Increases collateral ventilation
- Increases lung compliance (C_L)
- Decreases work of breathing (WOB)
- May enhance surfactant production

Adverse effects

- Air leaks; e.g., pneumothorax
- May increase intracranial pressure (ICP)
- May increase right-to-left blood flow across persistent fetal shunts
- Does NOT decrease cardiac output (nCPAP)
- Skin, mucosa breakdown from interface
Indications
- Respiratory distress syndrome (RDS)
- Apnea of prematurity
- Transient tachypnea of the newborn (TTN)
- Atelectasis
- Meconium aspiration
- Bronchopulmonary dysplasia
- Cardiogenic pulmonary edema
- Discontinuation of invasive ventilation

Contraindications
- Cardiovascular instability
- Frequent apneic episodes, with desaturation and bradycardia
- Frank ventilatory failure
- Upper airway anomalies; e.g., cleft palate

Outcomes
- Reduces ventilator days.
- There are mixed results pertaining to CPAP and
 - the rate of BPD
 - mortality
- Increased incidence of pneumothoraces compared to ventilation

CPAP generators
- Ventilator
- Bubble device
- Humidified high flow generator for nasal cannula (HHFNC)
- Dedicated CPAP device

CPAP generators
- Ventilator
 - advantages
 - monitors
 - graphics
 - alarms
 - measurement of lung mechanics
 - capability of other modes - easy switchover
 - disadvantage - current ventilators are expensive
 - administration of CPAP is a good reason to hang on to the old, time-cycled pressure ventilators
CPAP generators

- Bubble CPAP device - exhalation directed through column of water

Click to Fisher-Paykel bubble CPAP

- Humidified high flow nasal cannula (HHFNC) - CPAP produced by flow
 - high flow = 4 - 6 L/min
 - level of CPAP is determined by:
 - liter flow
 - size of prongs
 - size of the infant

- Dedicated CPAP device; e.g.; Infant Flow™ NCPAP and SIPAP™
 - Fluidic controls
 - advantages:
 - capable of CPAP and bilevel support
 - less expensive than current ventilators
 - compared favorably with Babylog™
 - transportable
 - disadvantage - availability of SIPAP?

Click to see Infant Flow™ devices

CPAP generators

- Bubble CPAP device
 - advantages
 - device simplicity
 - inexpensive
 - bubbling may enhance gas exchange
 - disadvantages:
 - increased WOB
 - infection??

- HHFNC
 - advantages
 - device simplicity
 - less damage to nasal tissues
 - cannulae are easier keep in position
 - disadvantages:
 - inconsistent level of CPAP
 - mixed data on effectiveness
 - need randomized clinical trials

CPAP interfaces

- Nasopharyngeal tube - least desirable
- Nasal prongs - most common
- Nasal cannula - for HHFNC
- Nasal mask - may reduce tissue damage
- Helmet

FYI - Click to download AARC Clinical Practice Guideline on CPAP for neonates
CPAP interfaces

- Helmet
 - currently under study
 - not FDA-approved
 - reduces tissue damage
 - decreases cerebral blood flow
 - will not function with patient-triggered modes

Click to see CPAP helmet
http://farm1.static.flickr.com/80/247084940_023fdc3543_m.jpg

Nasal injuries

- Injuries can lead to significant physical abnormalities
- Injury types:
 - compressed nasal bridge
 - asymmetric nares
 - septal erosion
 - keloid scarring

Click to see INCA™ nCPAP securing system
http://www.coopersurgical.com/ourproducts/Pages/INCACompleteSet.aspx?order1=44-2707&order2=44-2709&order3=44-2710&order4=44-2712&order5=44-2715&lc=Critical%20Care&name=INCA%C2%AE%20Infant%20Nasal%20CPAP%20Assembly&tc=1

Click to see other nCPAP securing systems
http://www.bipapforsma.com/page3.htm

Prevention of nasal injuries

- Remove Q4H to check skin
- Continually monitor positioning
- Alternate prongs with nasal mask
- Apply Duoderm™ over nose and philtrum
- Choose appropriate interface, size and hat

Click to see CPAP helmet
http://farm1.static.flickr.com/80/247084940_023fdc3543_m.jpg

CPAP bottom lines

- Strategy for RDS
 - intubate
 - surfactant
 - extubate to nCPAP
- Favored interface - short nasal prongs
- Pacifier may help by reducing mouth-breathing
- Room air nasal cannula ineffective

FYI - click for abstract on room air cannula

Special considerations

- Tracheal tubes
 - uncuffed ==> leaks are likely
 - small diameter ==> high resistance to flow

Mechanical Ventilation Basics

- Basics
- Special considerations
Special considerations

Lung volumes (TV low as .005L)
- V_D_{in} (dead space) not tolerated
- Compressible gas volume is critical
- Small leaks more critical (volume)

Lung & chest wall mechanics
- Low, rapidly changing C_L
- Small diameter of airways \Rightarrow high R_{aw} \Rightarrow low inspiratory flows (V_I)
- High C_{TH} \Rightarrow lack of skeletal support in face of low C_L \Rightarrow retractions

Complications of CMV

Oxygen-related
- Retinopathy of prematurity
- Pulmonary oxygen toxicity \Rightarrow RDS

Pressure-related (PIP, Ppt)
- Pneumothorax, etc.
- Pulmonary interstitial emphysema

Mean airway pressure - related
- Reduced cardiac output
- Reduced urinary output
- Intraventricular hemorrhage
- Necrotizing enterocolitis (NEC)

Pressure-oxygen-time related - BPD

Special Issues For Ventilators

Triggering inspiration
- Rapid rate \Rightarrow shorter T_I, T_E
- Ventilator response time may exceed patient’s inspiratory time
- Late response to effort \Rightarrow asynchrony with ventilator

Complications of asynchrony
- Barotrauma
- Increased WOB
- Maldistribution of ventilation \Rightarrow V/Q mismatch \Rightarrow hypoxemia
- Increased ICP \Rightarrow IVH
Special Issues For Ventilators

- Triggering mechanisms for selected ventilators
 - Pressure (obsolete)
 - Flow - all current ventilators
 - Motion-sensing (obsolete?)
 - Infant Star- abdominal motion
 - Sechrist IV 200 (SAVI)- thoracic impedance

Pressure targeted ventilation

- Used in time-cycled, pressure-limited ventilation
- Most common because of:
 - cuffless tube
 - lack of volume monitors
 - simple, inexpensive ventilators

Volume-Targeted Ventilation

- Requires precise \(TV_E\) monitoring
- Maintains \(V_E\) despite changing \(C_L\)
- \(R_{AW}\)
- Trial (2008) - favorable long-term effects for VCV
- Trial (2009) - \(TV = 6\) mL/kg to reduce WOB
- Problems:
 - uncuffed tubes ==> leaks
 - greater PIP

Pressure support ventilation

- Overcomes work of breathing due to ET
- Expiratory trigger adjustment important, due to ET leak
- Useful in combination with SIMV

Dual control modes

- Pressure control with volume guarantee (various names)
- Available on current ventilators
- Benefits:
 - volume ventilation
 - reduced peak airway pressure
 - square pressure wave form-
 - increased mean airway pressure
 - decelerating flow wave form
Initiating and maintaining ventilation

Initiation
- Patient hand-bagged (not by a gorilla) to determine PIP, f
- Placed on ventilator with same settings

Typical initial settings:
- $\text{PIP} = 20 \text{ cm H}_2\text{O or 6 mL/kg}$
- $\text{TI} = 0.3 \text{ sec.}$
- $\text{FIO}_2 = \text{ for SPO}_2 \ 85-90$
- $\text{VI} = 5-8 \text{ L/min}$
- $f = 40/\text{min}$
- $\text{PEEP} = 2-3 \text{ cm H}_2\text{O (social PEEP)}$

Ventilator adjustments

Ventilator settings titrated with:
- SpO2
- Chest excursion
- Lung sounds - air exchange
- Visual evidence of increased WOB; e.g., retractions
- Blood gases
- Vital signs

Control over PaO2, SPO2

- FIO_2
- Paw
 - EEP
 - $\text{TI} \Rightarrow \text{I:E}$
 - PIP or TV

Controlling PaCO2- VA

- frequency (f)
- tidal volume
- delta P (PIP-EEP)
- increasing EEP without increasing $\text{PIP} \Rightarrow \text{reduced TV} \Rightarrow \text{increased PaCO2}$
- moderate hypercapnia permitted - permissive hypercapnea

Weaning

- $\text{Protocol, implemented by RT reduces ventilation time (2009)}$
- $\text{Controls usually are not weaned to zero before extubation} \Rightarrow \text{increased WOB through ETT}$
- FIO_2 reduced to < 0.4
- PIP reduced to nonhazardous level, e.g., 10-12
Weaning
- Rate reduced to 8-12 BPM
- EEP never reduced to 0 before extubation
- Typical settings before extubation:
 - PIP = <12
 - EEP = 2-4
 - f = 10

Summary & Review
- Oxygen therapy
 - requirements
 - devices
 - humidification
 - subambient O2
- Aerosol therapy
 - medications
 - devices
 - interfaces - no to blowby

Summary & Review
- Environments
 - threats from environment
 - incubators
 - warmers
 - neurologic environment
- Airway management
 - special considerations
 - airway devices
 - suctioning
 - CPT - NO

Summary & Review
- CPAP
 - indications, complications
 - devices - pressure generators and interfaces
- Mechanical ventilation
 - special considerations
 - ventilation modes
 - triggering mechanisms
 - ventilator controls
 - extubation

References

END
References

