Neuromuscular Conditions

Arthur Jones, EdD, RRT

http://rc-edconsultant.com/

Learning Objectives:
- Describe the pathophysiology, manifestations, diagnosis and general management for the following conditions:
 - myasthenia gravis
 - Guillain Barre syndrome
 - amyotrophic lateral sclerosis
 - muscular dystrophy
 - spinal muscle atrophy
 - critical illness polyneuropathy and myopathy
- Describe techniques for assessment of weakness of ventilatory apparatus including physical assessment, lung volume measurement, blood gases, inspiratory and expiratory pressures and sleep studies.

Learning Objectives:
- Describe techniques applied to non-ventilatory management of neuromuscular conditions.
- Identify the goals for mechanical ventilation for patients with neuromuscular disease.
- Describe the selection and application of mechanical ventilation methods to neuromuscular conditions.

Neuromuscular Pathophysiology

Requirements for ventilation
- neural ventilatory drive - stimulus to breathe
- neural transmission to muscles of ventilation
- contractility of ventilatory muscles
- feedback to CNS; e.g., from chemoreceptors

Requirements for ventilation
- receptors- input to ventilation center
 - brainstem- pH sensor
 - carotid bodies- oxygen
 - lung stretch receptors - mechanics
Requirements for ventilation
- Ventilatory drive - centers in medulla and pons (brainstem)
 - Medullary ventilatory center - regularity of pattern
 - Pneumotaxic & apneustic centers - frequency and tidal volume

Requirements for ventilation
- Nerve transmission from centers to ventilation muscles
 - Phrenic nerve - from C3-C5
 - Innervates diaphragm
 - Intercostal nerves - from T1-T12
 - Innervate intercostal muscles

Requirements for ventilation
- Nerve transmission from centers to ventilation muscles
 - Abdominal nerves
 - Thoracic and lumbar spine
 - Innervate abdominal muscles

Requirements for ventilation
- Muscular contraction
 - Transmission across myoneural synapse
 - Muscular function

Neuromuscular impairment of ventilation
- CNS (brain, spinal cord) failure
 - Trauma
 - Infection
 - Inflammation
 - Toxins
 - Drugs
 - Ischemia/hypoxia
 - Congenital dysautonomia - inborn failure of breathing automaticity

Neuromuscular impairment of ventilation
- Nerve transmission failure
 - Trauma - transection of spinal cord
 - C1-C3 - absence of nerve transmission to all ventilatory muscles
 - C6-C7 - absence of transmission to intercostal & abdominal muscles
Neuromuscular impairment of ventilation
- nerve transmission failure
 - iatrogenic - laceration of phrenic nerve
 - occurs during heart surgery
 - may self-reverse (months)
 - infection
 - poliomyelitis
 - West Nile virus
- degenerative disease
 - amyotrophic lateral sclerosis
 - multiple sclerosis
- autoimmune disease
 - Guillain-Barre syndrome
 - myasthenia gravis
 - Lambert-Eaton syndrome

Neuromuscular impairment of ventilation
- nerve transmission failure
 - toxins - botulism (neuromuscular junction)
 - drugs
 - neuromuscular blockers
 - anticholinesterase agents

Neuromuscular impairment of ventilation
- muscular failure (congenital)
 - spinal muscle atrophy
 - muscular dystrophy

Neuromuscular impairment of ventilation
- muscular failure (acquired)
 - polymyositis (inflammation)
 - atrophy; e.g., ventilator-induced diaphragmatic dysfunction (VIDD)
 - fatigue - excessive WOB
 - rhabdomyolysis - breakdown of muscle
 - critical illness polyneuropathy

Components of ventilatory impairment
- Inspiratory muscle weakness - decreases lung volumes
- Expiratory muscle weakness - decreases expiratory flow (cough)
- Bulbar weakness - muscles of:
 - throat
 - jaw
 - tongue
 - face
 - predisposes to aspiration
Electrophysiology Tests

Purposes

- Confirm presence of neuromuscular disorder
- Distinguish between nerve, muscle and neuromuscular junction disorders
- Identify specific diagnosis

FYI - Link to RC article that explains electrophysiology testing
http://www.rcjournal.com/contents/09.06/09.06.1024.pdf

Types

- nerve conduction studies
- needle electromyography
- neuromuscular junction testing
- repetitive nerve stimulation
- single-fiber EMG
- train-of-four stimulation
- phrenic nerve conduction
- needle EMG of diaphragm

Nerve conduction studies

- Defined - percutaneous nerve stimulation with surface recording of conduction

FYI - Click for article on nerve conduction studies

Nerve conduction studies Parameters

- compound muscle action potential (CMAP) - sum of the response of all stimulated muscle fibers
- conduction velocity - if decreased, then neuropathy is present
- F wave - absence indicates demyelination, impairs conduction

Needle electromyography

- Needle inserted in muscle and measures motor unit potentials (MUP) with voluntary contractions
- Decreased duration/amplitude of motor unit potential suggests a myopathy

Click to see images of needle EMG
http://www.teleemg.com/new/atlas.htm
<table>
<thead>
<tr>
<th>Repetitive nerve stimulation</th>
<th>Train-of-four stimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface electrodes produce repetitive, strong stimuli</td>
<td>Used to titrate surgical neuromuscular blockers</td>
</tr>
<tr>
<td>Early decrement in compound muscle action potential (CMAP) indicates neuromuscular junction disorder; e.g., myasthenia gravis</td>
<td>Four stimuli of ulnar nerve, with observation of thumb twitches - desired is 1 or 2 twitches per 4 stimuli</td>
</tr>
</tbody>
</table>

Click for more information on train-of-four testing http://www.globalrph.com/neuromuscular.htm#Train_of_four

<table>
<thead>
<tr>
<th>Phrenic nerve conduction</th>
<th>Phrenic nerve conduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technique</td>
<td>Technique</td>
</tr>
<tr>
<td>- Surface electrodes, bilaterally on neck stimulate phrenic nerve</td>
<td>- Surface electrodes, bilaterally on neck stimulate phrenic nerve</td>
</tr>
<tr>
<td>- Diaphragm CMAP measured with electrodes placed at the xiphoid process and costal margin</td>
<td>- Diaphragm CMAP measured by electrodes at xiphoid process and costal margin</td>
</tr>
<tr>
<td>Significance</td>
<td>Significance</td>
</tr>
<tr>
<td>- bilateral decreased amplitude - neuropathy</td>
<td>- bilateral decreased amplitude - neuropathy</td>
</tr>
<tr>
<td>- unilateral decreased amplitude - traumatic or surgical lesion</td>
<td>- unilateral decreased amplitude - traumatic or surgical lesion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guillain-Barre Syndrome</th>
<th>Description & demographics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description & demographics</td>
<td>Group of five autoimmune peripheral neuropathies</td>
</tr>
<tr>
<td>- acute inflammatory demyelinating polyneuropathy (90% of cases)</td>
<td>- acute inflammatory demyelinating polyneuropathy (90% of cases)</td>
</tr>
<tr>
<td>- acute motor axonal neuropathy (young people)</td>
<td>- acute motor axonal neuropathy (young people)</td>
</tr>
<tr>
<td>- acute motor sensory axonal neuropathy (uncommon)</td>
<td>- acute motor sensory axonal neuropathy (uncommon)</td>
</tr>
<tr>
<td>- Miller-Fisher syndrome (rare)</td>
<td>- Miller-Fisher syndrome (rare)</td>
</tr>
<tr>
<td>- acute pandysautonomia (rarest)</td>
<td>- acute pandysautonomia (rarest)</td>
</tr>
</tbody>
</table>
Epidemiology
- Most common neuromuscular condition for ICU admission
- 1-3 cases/100,000/year
- All age groups
- No gender preference
- Incidence unrelated to current influenza vaccines

Pathophysiology
- Antecedent infection - one to three weeks before GBS onset
- Interaction of pathogen and nerve tissue activates autoimmune response - immunity to self

Pathophysiology
- Antecedent infection - one to three weeks before GBS onset
- Interaction of pathogen and nerve tissue activates autoimmune response - immunity to self
- Autoimmune response produces antibodies that cause demyelination of nerve cells
- Demyelination impairs neural conduction

Common pathogens
- campylobacteriosus - most common
- cytomegalovirus
- Epstein-Barr virus
- varicella zoster virus
- mycoplasma pneumoniae

Manifestations
- Severity is variable - weakness to total paralysis with autonomic dysfunction
- Evolves over hours to days
- Ascending paralysis - starts as 'rubbery legs'
- Tingling in extremities

Manifestations
- Does not affect consciousness - patients are alert and frightened
- May involve cranial nerves - bulbar weakness
- Loss of deep tendon reflexes
- Pain in affected muscles; sometimes back pain
- Ventilatory failure in 30% of patients
Differential diagnosis
- Myasthenia gravis
- Botulism
- Polymyositis
- Poliomyelitis
- West Nile virus
- Heavy metal intoxication; e.g., arsenic
- Tick paralysis (Lyme disease)
- Porphyria - a hemoglobin disorder

Diagnosis
- Clinical manifestations; e.g.:
 - ascending paralysis
 - areflexia
 - pain
- Laboratory - elevated CSF proteins; 48H after onset

Diagnosis
- Electrodiagnostic features
 - may be absent in early stages
 - decreased nerve conduction velocity
 - needle EMG - abnormal spontaneous activity
 - normal muscle response to direct stimulation

Management
- Supportive
 - respiratory care
 - nursing care
 - psychological, emotional support

Management
- Intravenous immunoglobulin (IVIg)
 - neutralizes antibodies
 - five daily infusions
- Plasmapheresis
 - blood removed from patient, plasma separated, then treated to remove antibodies, then returned or replaced with substitute fluid
 - complications (uncommon)
 - hypotension
 - hemorrhage
 - sepsis - immunosuppression

Click to see picture of patient on plasmapheresis
http://www.flickr.com/photos/dunegod00/2526944266/in/photostream/
Management
- Plasmapheresis vs. IVlg
 - They are equally effective for GBS
 - IVlg easier to administer
 - IVlg has fewer complications

Course, prognosis
- Worst clinical function usually in first week
- Nearly full function at four weeks
- Full recovery within months for 85% of patients
- Relapse occurs in 5-10%
- Mortality <5%

Myasthenia Gravis

Description
- Autoimmune disorder that compromises transmission across the neuromuscular junction.
- Characterized by weakness and fatigability of striated muscles.
- Broad range of severity - from drooping eyelids (ptosis) to ventilatory failure.

Epidemiology
- 14 cases per million in US (not rare)
- Occurs in all age groups
- Females, peak occurrence - 20-40 YO
- Males, peak occurrence - 40-60 YO
- Congenital form - onset in utero, with decreased fetal movement
- Juvenile form - onset in 20s

Pathophysiology
- Autoimmune activity against acetylcholine receptors by anti-AchR antibodies
Nerve impulse \implies release of ACh \implies AChR \implies depolarization of muscle

Release of ACh-ase \implies hydrolyzes ACh \implies repolarization of muscle for next contraction

Myasthenia gravis - AChR antibodies decrease available receptors, preventing depolarization

Manifestations
- Does not affect consciousness
- Weakness, initially in ocular muscles
 - ptosis (drooping eyelids)
 - diplopia (double vision)
- Difficulty chewing, speaking, singing, swallowing
- Fatigability - improves with rest
- Descending paralysis

Differential diagnosis
- Hypothyroidism
- Medications may induce or exacerbate MG:
 - antibiotics; e.g., aminoglycosides
 - cardiovascular agents; e.g., propanolol
 - anti-malarial agents; e.g., chloroquine
 - miscellaneous agents
- Hypothyroidism
- Adverse effects of medications
- Amyotrophic lateral sclerosis
- Botulism - strong resemblance
- Guillain-Barre syndrome
- Polymyositis
- Lambert-Eaton syndrome - complication of carcinoma
- Multiple sclerosis

Click to see video of MG patient detained by police (2 min)
http://www.youtube.com/watch?v=ypwjG4J7JKM
Diagnosis

- **Clinical presentation**
 - Ice pack test - ice improves eyelid fatigue
 - Tensilon (edrophonium HCl) test - anticholinesterase agent increases ACh, increasing ACh-receptor interactions
 - **onset** 30 sec.
 - **duration** 5 min.

 Click to see video of positive Tensilon test
 http://www.youtube.com/watch?v=k7YX9kuWrxA

- **Electrophysiology - repetitive nerve stimulation**
 - rapid decline in amplitude of induced responses
 - specific for neuromuscular junction disorders

- **Laboratory - AChR-Ab**
 - specific for MG
 - false negative results in 50% of MG patients who have only ocular weakness

- **Medical imaging - chest CT with contrast** is indicated
 - 20% MG patients have thymoma
 - 70% MG patients have thymic hyperplasia

Click to see thymus enlargement with MG

Management

- **Supportive - severe weakness** (myasthenic crisis) may require intubation, ventilation

- **Evaluate for thymectomy**
 - improvement (delayed) in 85%
 - remission in 35%
 - recommended for all MG patients between puberty and 55 YO
 - Thymectomy - should be done in center with experience
Management

- Anticholinesterase agents
 - oral pyridostigmine (Mestinon)
 - symptomatic improvement
 - bedside pulmonary function testing by RTs for dosage, duration of action

Management

- Cholinergic crisis - side effect, due to overdose with pyridostigmine
 - signs
 - bradycardia
 - bronchospasm
 - excessive secretions
 - management - atropine

Management

- Immunosuppression
 - severe weakness
 - plasmapheresis
 - IVIg
 - moderate weakness
 - glucocorticoids - improvement in most patients
 - azathioprine
 - mycophenolate mofetil
 - cyclosporine

Amyotrophic Lateral Sclerosis

Description

- AKA 'Lou Gehrig's disease'
- Devastating progressive neurodegenerative condition, causing:
 - painless weakness
 - muscular atrophy

FYI - Click to see Lou Gehrig video (.5 min)
http://www.youtube.com/watch?v=_LFprYdL2_6

Epidemiology

- Most common progressive neurodegenerative disease
- Incidence - 2 cases /100,000 people
- 5-10% of cases are inherited as autosomal dominant trait - familial ALS
- Male:female = 1.4:1
- 90% of ALS patients > 40 YO
- 5% of ALS patients < 30 YO
Epidemiology
- Possible risk factors:
 - smoking
 - oxidative stress
 - head injury - soccer players

Pathophysiology
- Death of motor neurons:
 - anterior horn cells
 - brainstem motor neurons
 - corticospinal motor neurons
- Denervation causes muscular atrophy
 (amyotrophy)

Click to see image of diseased spinal neuron
http://www.thehealthsuccesssite.com/images/muscle-als.jpg

Click to see image of ALS pathology
http://www.alsa.org/research/article.cfm?id=824

Manifestations
- Does not affect sensation or consciousness
- Manifestations vary, depending on which neurons are initially involved
 - lower neurons - limbs
 - bulbar neurons - face, tongue

Manifestations
- Does not affect sensation or consciousness
- Manifestations vary, depending on which neurons are initially involved
- Weakness
 - slow onset
 - asymmetric
 - starts distally in one limb
 - can start anywhere, progressing to everywhere

Manifestations
- Cramping
- Fasciculation (twitching)
- Exaggerated motor expressions of emotion (laughing, crying)
- Progressive paralysis
- Difficulty swallowing
- Ventilatory failure

Prognosis
- Common - death within 3 years of onset
- 20% survive 5 years
- 10% survive >10 years
Differential diagnosis

- Importance - ALS has no cure; so, alternatives that may be treatable must be ruled out before accepting ALS as diagnosis.

Differential diagnosis

- Other motor neuron diseases
- Structural disorders; e.g., CNS tumor, CNS radiation injury
- Toxic disorders; e.g., heavy metals
- Immune, inflammatory disorders; e.g,
 - multiple sclerosis
 - myasthenia gravis

Differential diagnosis

- Parkinson disease
- Thyrotoxicosis
- Infections; e.g.,
 - Lyme disease
 - syphilis
 - Creutzfeldt-Jakob disease

Diagnosis

- Clinical presentation
 - progressive course of weakness
 - hyperreflexia in weak, atrophied extremity
- Electrodiagnostics
 - denervation
 - fasciculation potentials

Management

- Supportive
 - respiratory care
 - nutrition
 - physical therapy
 - nursing
 - end-of-life care

Management

- Riluzole
 - glutamate antagonist
 - extends life by 2 months (average)
- Stem cell therapy - research in early stages
Muscular Dystrophy

Description
- Muscular dystrophy - a group of hereditary, progressive conditions that cause muscle fiber degeneration.

Description
- Duchenne muscular dystrophy (DMD)
 - most common
 - X-linked recessive trait
 - males only

Description
- Becker MD
 - second most common
 - milder than DMD
 - X-linked recessive - males only
 - Limb girdle MD - males & females
 - Emery-Dreifus MD - males & females

Epidemiology - DMD
- 1 case per 3500 live male births
- 1/3 of cases are spontaneous mutations ==> mom was not born with the defective gene

Pathophysiology
- Genetic defect for production of dystrophin
 - needed for muscle cell membrane integrity
 - deficiency permits leakage of muscle cell components ==> muscle cell death

Click to see video on histopathology of MD (3 min.)
http://www.youtube.com/watch?v=xwS3FtmvlRk
Manifestations

- Usual onset of frequent falling at 3-5 YO
- Gait abnormalities; e.g., toe walking
- Gower sign - arising from sitting position by going prone
- Inability to ambulate 7-13 YO
- Contractures

Progressive ventilatory failure

- Muscle weakness
- Kyphoscoliosis - restrictive lung dx
- Recurrent pulmonary infections

Other manifestations

- Progressive ventilatory failure
- Muscle weakness
- Kyphoscoliosis - restrictive lung dx
- Recurrent pulmonary infections

Cardiomyopathy - major cause of death

Cognitive deficit - IQ about 85

Death before 30 YO, due to cardio-pulmonary failure

Diagnosis

- Clinical presentation
 - Frequent falling
 - Gait abnormalities
 - Gower sign
- Electromyography - decreased action potential amplitude

Laboratory studies

- Elevated creatine phosphokinase (CPK) - DMD specific
- Muscle biopsy for histology
- Gene testing
 - Prenatal diagnosis
 - Carrier identification

Management

- Supportive
 - Respiratory care - lots of it
 - Nutrition
 - Physical therapy
 - Nursing
 - End-of-life care
Management

Special problem - kyphoscoliosis renders chest imaging difficult
- standard chest radiographs - difficult to position and interpret
- echocardiography - poor images

Click to see chest radiograph of severe kyphoscoliosis
http://www.scoliosisjournal.com/content/figures/1748-7161-2-15-5-i.jpg

Management

- Cardiac care
 - problems
 - cardiac dysfunction is masked by other limitations
 - dysrhythmias
 - ventricular failure
 - thromboembolic events

Management

- Cardiac care
 - early cardiac evaluation
 - diuretics, as indicated
 - angiotensin converting enzyme (ACE) inhibitors, as indicated
 - beta blockers, as indicated
 - anticoagulants, as indicated

Management

- Surgical procedures
 - surgical release of severe contractures
 - spinal fusion for kyphoscoliosis

Management

- Steroids - prednisone
 - prolongs walking
 - improves cardiac function
 - but -- side effects

Management

- Interventions under study
 - PTC 124 (Ataluren)
 - interferes with expression of defective genes
 - FDA orphan status for DMD & CF
 - gene replacement
 - stem cells - replace dystrophin

FYI - Click for more information on PTC 124
http://www.mda.org/research/070423dmd_ptc_124.html
Spinal Muscle Atrophy

Description
- An autosomal recessive hereditary disease characterized by progressive hypotonia (floppiness) and muscular weakness.

SMA major types:
- Type I (Werdnig-Hoffmann disease) - identified in patients from birth to age 6 months.
- Type II chronic infantile SMA - diagnosed in infants aged 6-12 months.
- Type III (Kugelberg-Welander disease) - diagnosed in children aged 2-15 years.

Epidemiology
- The most common degenerative neurologic disease in children
- The leading heritable cause of infant mortality
- Incidence - 1 case per 15,000-20,000
- 3-10 times more common in North Dakota
- Male:female = 2:1

Pathophysiology
- Absence of a neuron survival gene allows programmed cell death (apoptosis)
- Progressive degeneration of motor neurons from anterior horn cells in the spinal cord.

Manifestations
- Type I - shows at birth to 6 mo.
 - suspected with decreased fetal activity
 - floppy (hypotonic) newborn
 - unable to control head or roll over
 - tongue fasciculations - cardinal sign
Manifestations
- Type II - shows at 6-12 mo.
 ◆ weakness in lower extremities
 ◆ able to control head and sit up
 ◆ upper extremity tremors
 ◆ tongue fasciculations - cardinal sign

- Type III - shows at 2-15 yrs.
 ◆ tongue fasciculations - cardinal sign
 ◆ can walk early in life, then weaken
 ◆ wheelchair bound by 40 YO
 ◆ SMA does not affect cognition

Differential diagnosis
- Cerebral palsy
- Muscular dystrophy
- Myasthenia gravis
- Polymyositis
- Inflammatory polyneuropathy
- Infant botulism - honey

FYI - Click to download article on infant botulism

Diagnosis
- Clinical presentation
 ◆ progressive course of weakness
 ◆ tongue fasciculations

- Electrodiagnostics
 ◆ fasciculation potentials
 ◆ denervation

- Laboratory - prenatal DNA testing

Prognosis
- Type I SMA
 ◆ respiratory management has increased longevity
 ◆ 1 YO without ventilation
 ◆ >10 YO with noninvasive ventilation

- Type III SMA - may have normal life span

Management
- Supportive
 ◆ respiratory care
 ◆ nutrition
 ◆ physical therapy
 ◆ nursing
 ◆ end-of-life care - especially for parents
Critical Illness Polyneuropathy & Myopathy

Description
- First described in 1986
- Critical illness polyneuropathy (CIP) and critical illness myopathy (CIM) are complications of critical illness characterized by limb weakness and prolonged ventilator weaning.
- AKA - Intensive care unit-acquired weakness (debilitation)

Epidemiology
- Incidence - patient experiencing:
 - sepsis or systemic inflammation - 70%
 - multiple organ failure - 100%
 - ventilation for 4-7 D - 25-33%
 - ICU for 7 D - 49-77%

- Additional risk factors
 - corticosteroids
 - neuromuscular blocking agents
 - aminoglycosides; e.g., gentamycin
 - hyperglycemia
 - parenteral nutrition (TPN)

Pathophysiology
- Complex and unclear
- The neuromuscular system may be an additional organ in multiple organ failure (MOF)
- Muscle inactivity ==> atrophy

- Disruption of neuromuscular microcirculation by:
 - hyperglycemia
 - cytokines
- decreased anabolic hormones
- increased catabolic hormones
Manifestations
- Muscle weakness, paralysis
- Absent deep-tendon reflexes
- Prolonged weaning from ventilator
- Longer duration of stay in ICU and hospital; therefore:
 - Increased costs ($66,000/patient)
 - Increased risk for morbidity; e.g., VAP

Differential Diagnosis
- Myasthenia gravis
- Guillain-Barre’ syndrome
- Amyotrophic lateral sclerosis
- Polymyositis
- Multiple sclerosis
- Et cetera

Diagnosis
- Primary aim is to rule out other diagnoses that may be treatable
- Clinical presentation
 - Generalized weakness
 - Weaning difficulty
- Electrodiagnostics - results may not justify the costs
- Laboratory - muscle biopsy to exclude myopathy

Management
- Supportive
 - Respiratory care
 - Nutrition
 - Nursing
 - Physical therapy for recovery
- Intensive insulin therapy - maintain glucose 80-110 mg/dL
- Avoidance of potential triggers; e.g., steroids, neuromuscular blockers
- Mobilization in ICU

Respiratory Assessment For Weakness
Respiratory muscle evaluation
- Important point - respiratory muscle weakness can be detected by bedside evaluations before any blood gas abnormality is present.

Physical signs
- rapid, shallow breathing - early sign
- accessory muscle recruitment
 - sternocleidomastoids
 - scalenes
 - external intercostals
 - abdominal - active expiration
- abdominal paradox - diaphragmatic fatigue

Blood gas analysis
- Oxygenation deficits - advanced disease
 - hypoventilation
 - ventilation-perfusion defects
 - atelectasis
 - pneumonia

Blood gas analysis
- Hypercapnia - advanced disease
 - weakness ==> rapid, shallow breathing
 - decreased sensitivity to CO2 (important)

Lung volumes and flows
- Lung volumes - restrictive pattern with initial normal compliance
 - decreased VC, TLC
 - normal FRC & RV
 - worsening with kyphoscoliosis - true restriction

Lung volumes and flows
- Comparison of erect, vs. supine VC
 - can be done at bedside
 - normal supine is 10% less than erect
 - greater difference ==> muscle weakness
Lung volumes and flows
- Lung volumes are not sensitive measures of respiratory muscle strength.
- Lung volumes are compromised by reduced compliance; inspiratory pressure is not compromised - pressures are better indicators of strength.

Expiratory flow rates
- Decreased FEV₁
- Normal FEV₁/FVC
- Decreased PEF ==> impaired cough effectiveness
- Peak cough flow >160 L/min - effective cough for adults

Inspiratory/expiratory pressures
- **PI\textsubscript{MAX}**
 - Should be measured at FRC
 - Large range for normals
 - Sources of error:
 - Patient effort
 - Leaks
 - Technique - need to standardize

- **PE\textsubscript{MAX}**
 - Should be measured at TLC
 - Reflects coughing capability

FYI - Article with predicted MIP and MEP values

Sniff nasal inspiratory pressure (SNIP)
- **Description**
 - Manometer connected via tube to one nostril
 - Other nostril remains open
 - Patient instructed to sniff maximally

- **Advantages**
 - Natural maneuver - easy to do
 - Reliability better than PI\textsubscript{MAX}
 - Validated for all age groups

- **Prognostic information** - SNIP < 40 cm H2O ==> nocturnal hypoxemia and risk for mortality (ALS patients)

- **Predicted values** - based on age and gender

FYI - Click to download article with predicted SNIP
Sleep studies (polysomnography)
- **Rationale**
 - to detect sleep-related hypventilation
 - determine need for nocturnal non-invasive ventilation

Sleep studies (polysomnography)
- **Baseline study - early in course of dx**
- **Follow-up**
 - appearance of signs of sleep apnea
 - daytime hypercapnia
 - nocturnal desaturation
 - periodically, to evaluate therapeutic regimen

Respiratory Management

Quality of life and decisions
- Noninvasive ventilation has increased survival time for NM patients
- Patients have their own perceptions on quality-of-life - likely to be better than we might think (must-read article for download below)

FYI - Click to download the must-read article on SMA

Quality of life and decisions
- Noninvasive ventilation has increased survival time for NM patients
- Patients have their own perceptions on quality-of-life - likely to be better than we might think
- Decisions about support should be made before any crisis
- Decisions should involve a healthcare team, patient and family

Mechanical ventilation
- Noninvasive ventilation indicated for:
 - sleep disordered breathing
 - hypercapnia
 - pulmonary infections
 - perioperative management
 - pregnancy
 - palliative, end-of-life care
Non-ventilatory care

Goal - delay need for ventilatory support

Problem

- ventilatory muscle weakness impairs cough
- secretion retention ==> recurrent pneumonia

Non-ventilatory care

Treatment strategies not used

- percussion and postural drainage - not routinely used
- bronchodilators - not indicated and may be harmful
- aerosolized mucolytics - ineffective
- deep suctioning

Non-ventilatory care

Treatment strategies

- manual cough assistance - tussive squeeze
- in/exsufflator device - indicated for MEP < 60 cm H2O
 - positive pressure for inflation
 - negative pressure for increased expiratory (cough) flow
 - usual pressures 40 to -40 cm H2O

Non-ventilatory care

Treatment strategies

- manual cough assistance - tussive squeeze
- in/exsufflator - indicated for MEP < 60 cm H2O
 - positive pressure for inflation
 - negative pressure for increased expiratory (cough) flow
 - usual pressures 40 to -40 cm H2O
 - may reverse atelectasis
 - improves symptoms and SPO2

Therapeutics

- in/exsufflator - cough assistance

Image Courtesy of Philips Respironics

Link to Emerson CoughAssist (TM) with video (2 min.)

Mechanical ventilation

Goals for ventilation

- increase survival time
- rest ventilatory muscles
- increase chemoreceptor sensitivity - decreases daytime PCO2
- improve sleep
Mechanical ventilation
- Negative pressure ventilation
 - as effective as NIPPV
 - cumbersome, difficult
- types:
 - iron lung
 - cuirass; e.g., Pneumo-Wrap
 - Hayek™ RTX (cuirass)

Click to see video of Hayek cuirass ventilator (5.5 min)
http://www.unitedhayek.com/presentations/movies/id/1

Mechanical ventilation
- Noninvasive positive-pressure ventilation (BiPAP)
 - treatment of choice for NM disease
 - progression - nocturnal to intermittent daytime use
 - mouthpiece during daytime
 - limitation - pressure injury from masks with continuous use

FYI - Link to RC article on NIPPV for pediatric patients
http://www.rcjournal.com/contents/08.06/08.06.0885.pdf

Mechanical ventilation
- PPV with tracheostomy
 - decision to continue support
 - required when:
 - risk for aspiration increases
 - NIPPV becomes ineffective
 - patient develops intolerance or injury from face mask

Mechanical ventilation
- Continued airway and ventilatory care
- Support for communication
- Education for home care
- End-of-life support

References
- Benditt JO. The neuromuscular respiratory system: physiology, pathophysiology, and a respiratory care approach to patients. Respir Care 2006;51:829-48.
- Hess DR. Noninvasive ventilation in neuromuscular disease: equipment and application. Respir Care. 2006 Aug;51:896-911
- Simonds AK. Recent advances in respiratory care for neuromuscular disease. Chest. 2006;130:1879-86.

END
<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauser SL (Ed.). Harrison's neurology in clinical medicine, Chaps. 21, 35, 36, 38. 2006; McGraw-Hill, NY.</td>
</tr>
<tr>
<td>Deem S. Intensive care unit acquired muscle weakness. Respir Care 2006;51:1041-51.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panitch HB. Respiratory issues in the management of children with neuromuscular disease. Respir Care. 2006;51:885-93.</td>
</tr>
<tr>
<td>Truong AD, Fan E, Brower RG, Needham DM. Bench-to-bedside review: Mobilizing patients in the intensive care unit - from pathophysiology to clinical trials. Critical Care 2009, 13:216</td>
</tr>
</tbody>
</table>