Shock, Fluid & Buffer Therapy

Arthur Jones, EdD, RRT
http://rc-edconsultant.com/

Learning Objectives:
- Explain the etiologies, manifestations and management of shock.
- Describe specific agents used to maintain blood pressure, fluid balance and pH, along with their actions, effects and complications.

Categories & Complications

Shock
Definition - inadequate perfusion of tissues to meet metabolic requirements.
- anaerobic metabolism - lactate
- release of intracellular substances to system
- accumulation of metabolic wastes

Categories
- Hypovolemic
- Distributive
- Cardiogenic

Hypovolemic shock
- Blood volume loss
 - Hemorrhage
 - Burns
 - Dehydration
 - heat exhaustion
 - diarrhea, vomiting
 - inadequate intake
Distributive shock
- blood pressure loss due to fluid distribution outside intravascular space or vasodilation.
 - third spacing: water in interstitial space
 - infusion with crystalloids
 - plasma protein deficit

Cardiogenic shock
- Ineffective cardiac pump
 - myocardial infarction: loss of contractile tissue
 - cardiomyopathy: ventricular dilation, loss of contractility
 - mechanical abnormalities
 - valvular disease
 - septal defects: high output failure
 - obstructive defects

Complications
- Acute respiratory distress syndrome (ARDS)
- Multiple organ system failure
 - cardiac
 - hepatic
 - renal
 - gastrointestinal

Complications
- Hypoxic-ischemic encephalopathy (HIE)
 - increased intracranial pressure (ICP)
 - when ICP equals mean arterial pressure, cerebral perfusion pressure equals zero.

Manifestations

FYI - Link to article on shock
http://www.emedicine.com/med/topic2114.htm

FYI - Link to information on HIE
http://www.emedicine.com/ped/topic149.htm
General Manifestations
- Hypotension - PSys < 90 mm Hg
- Tachycardia
- Slow capillary refill
- CNS signs - vertigo, syncope, coma
- Pallor
- Oliguria, anuria
- Decreased transcutaneous PO2

FYI - Link to article on transcutaneous PO2 and shock
http://pediatrics.aappublications.org/cgi/content/abstract/65/5/881

Specific Manifestations
- Hemorrhagic
 - low Hb, Hct
 - decreased CVP
- Dehydration
 - elevated Hb, Hct
 - decreased CVP

Specific Manifestations
- Anaphylactic
 - history of bite, ingestion
 - pruritus (itching)
 - urticaria (hives)
 - laryngospasm
 - bronchospasm

FYI - Link to information on anaphylaxis

Specific Manifestations
- Urticaria (hives)

Link to picture of hives
http://4.bp.blogspot.com/_iE08ptrg_HHo/SYxzoD214-I/AAAAAAAAAok/SXkrlBv83Io/s400/pbpn+-+hives.jpg

Link to another picture of hives

Specific Manifestations
- Septic
 - signs of infection - fever, etc.
 - increased cardiac output (QT)
 - decreased C(a-v)DO2

Shock - Specific Manifestations
- Cardiogenic
 - signs of MI
 - pulmonary edema
 - elevated PCWP (>25 mm Hg)

FYI - Link to article on cardiogenic shock
Management of Shock

Hypovolemic shock
- Vasopressors contraindicated for hypovolemia because of physiologic vasoconstriction
- Replacement of the specific fluids lost to circulation is necessary

Blood products - hemorrhage
- Whole blood
- Plasma
- Packed red blood cells

Colloids - remain in intravascular space
- Temporary for hemorrhage
- Manage third spacing by drawing fluid from interstitium

FYI - Link to article on colloids vs. crystalloids in shock
http://ccforum.com/content/4/S2/S16

Colloids - remain in intravascular space
- Common fluids
 - Human albumin - research questions its use
 - Dextran large carbohydrate molecule
 - Hetastarch (Hespan)

Crystalloids - much loss to interstitial (third) space
- Primary for dehydration, burns
- Common fluids
 - NaCl - 0.9%, 0.45%
 - Dextrose - in water or saline
 - Ringer's solution
 - Ringer's lactate - solution of choice for resuscitation
Hypovolemic shock
- **Crystalloid solutions**
 - Ringer’s solution
 - NaCl
 - MgCl2
 - Na2HPO4
 - NaHCO3

- **Dehydration, burns**
 - Ringer’s lactate
 - NaCl
 - Na lactate
 - KCl
 - CaCl

Monitoring fluid volume
- **Blood products**
- **Immune reactions; e.g. anaphylaxis**
- **Non-immune reactions; e.g., fluid overload**
- **Infections; e.g., HIV**

<table>
<thead>
<tr>
<th>Complications of Fluids</th>
<th>Blood products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immune reactions; e.g. anaphylaxis</td>
<td>Non-immune reactions; e.g., fluid overload</td>
</tr>
<tr>
<td>Infections; e.g., HIV</td>
<td>Transfusion related acute lung injury (TRALI)</td>
</tr>
</tbody>
</table>

FYI - Link to article on transfusion risks
http://www.webmd.com/a-to-z-guides/blood-transfusion-risks-of-blood-transfusion

FYI - Link to article on TRALI
http://www.scbcinfo.org/publications/bulletin_v3_n1.htm
Complications of Fluids

- **Crystalloids**
 - Reduced colloid osmotic pressure (COP) ==> 3rd spacing
 - Electrolyte, pH imbalance
- **Dextrose (glucose)**
 - Hypercapnia, acidemia
 - Hyperglycemia

Anaphylactic shock

- **Epinephrine**
 - Vasoconstriction
 - Increase blood pressure
 - Reverse mucosal edema
 - Bronchodilation

- **Diphenhydramine (Benadryl)** - Inhibit action of histamine
- **Steroids**, e.g., hydrocortisone - Helps body cope with stress
- **Beta-agonist**; e.g., albuterol - Bronchodilation

Distributive shock

- **Crystalloids**
- **Vasopressors**
 - Epinephrine
 - Norepinephrine
 - Dopamine
 - Vasopressin
 - Neosynephrine

- **Anaphylactic shock**

- **Distributive shock**

 - Septic (distributive) shock
 - Antibiotics
 - Vasopressin (Pitressin)

 - Cause by toxins, drugs
 - Vasopressors
 - Removal of toxin, drug
 - Diuresis
 - Dialysis
 - Antidotes
 - Antitoxins

FYI - Link to article on vasopressin in septic shock
http://journal.ics.ac.uk/pdf/1201011.pdf
Cardiogenic shock
- vasopressors
- nitrates
- surgery, angioplasty
- intra-aortic counterpulsation
- inotropic agents
 - dobutamine
 - dopamine
 - milrinone (Primacor)

Complications of vasopressors
- peripheral tissue necrosis
- renal failure
- hypertension
- increased myocardial work

Buffer Therapy
- Purpose: to reverse acid-base imbalance, usually acidemia
 - NaHCO3 action: provides HCO3- $$\Rightarrow [H^+ + [HCO_3^-]] \Rightarrow H_2O + CO_2$$
 - depends on ventilation to excrete CO2

Buffer Therapy
- NaHCO3 complications
 - Respiratory acidemia if CO2 not excreted
 - Metabolic alkalemia (overdose)
 - Hypernatremia
 - Cerebral edema

Buffer Therapy
- NaHCO3 contraindications
 - pH >7.20
 - severe hypernatremia, often associated with renal failure
Buffer Therapy

- NaHCO3 Administration titrated with blood pH

\[\text{HCO3 (mEq)} = \text{kg} \times (15 - \text{observed HCO3}) \times 0.5 \]

Buffer

- Tris-hydroxymethyl aminomethane-THAM (Tromethamine)- reverses acidemia without excretion of CO2
 - Action- organic proton acceptor

Buffer

- THAM
 - Indications
 - metabolic acidemia with hypernatremia
 - acidemia in conjunction with limitations in ventilation-permissive hypercapnia

FYI - Link to article on THAM and permissive hypercapnea

Buffer

- THAM
 - Complications
 - apnea
 - hypoglycemia
 - hypokalemia
 - alkalosis
 - tissue necrosis from infiltration

Buffer

- Tribonat
 - Currently used in Europe
 - Ingredients
 - NaHCO3
 - THAM
 - acetate
 - PO4
Buffer
- Tribonat - advantages
 - minimal effect on PCO2
 - minimal overcorrection risk
 - less Na than NaHCO3
 - no tissue irritability

Summary & Review
- Shock categories
 - hypovolemic
 - distributive
 - cardiogenic
- Shock - manifestations
 - general
 - category - specific

Summary & Review
- Shock management
 - fluid replacement
 - vasopressors
 - cardiotonics
- Buffers
 - NaHCO3
 - THAM
 - Tribonat

References

END