Learning Objectives:
- Compare ventilation modes available on state-of-the-art mechanical ventilators with respect to their attributes, advantages and disadvantages.
- Identify modes available on specific brands of ventilators.
- Explain the purposes, physiological effects and adjustment of tube compensation, expiratory timer and rise time.
- Describe the evidence base for current modes of ventilation.

Ventilation Modes

Volume Control

- **Advantages**
 - variable flow to meet patients' demands
 - increased mean airway pressure-improved oxygenation
 - limits excessive airway pressure
 - improves gas distribution
 - decreases WOB

- **Disadvantages**
 - preset, limited flow - may not meet patients' needs
 - possibility of volutrauma

Pressure Control

Volume Control

- **Advantage**
 - constant TV, despite changes in patients' lung mechanics
Pressure Control

- **Disadvantages**
 - TV varies with mechanics
 - TV may become excessive, causing overdistension, volutrauma
 - inconsistent changes in TV with PEEP, PIP

Pressure Support

- **Attributes**
 - pressure-limited
 - flow-cycled- inspiration ended by reaching a percentage of the peak inspiratory flow
 - variable flow to meet patients' demands
 - decreases WOB

Pressure Support

- Original purpose- overcome WOB imposed by ETT
- Problem- correct level of PS is hard to identify, because imposed WOB varies with flow rates, impedance
- Estimated PS level = PIP - Ppt

Dual Control Modes

- Combine volume and pressure control to achieve advantages of each type:
 - guaranteed minimum tidal volume
 - minimized plateau pressure

Dual Control Modes

- Breaths are pressure controlled with a guaranteed minimum volume, based on feedback on patient ventilation to ventilator logic
- Types:
 - within breath
 - breath-to-breath

Within Breath Dual Control

- Availability:
 - volume-assured pressure support- VAPS (Bird 8400sti, TBird)
 - pressure augmentation PA (Bear 1000)

FYI - Click for picture of TBird™ ventilator
Within Breath Dual Control
- Pressure support with volume guarantee for every breath
- Breath initiated, ventilator compares output with target, changing to volume control, if needed

Dual Control Breath-to-Breath
- Volume guarantee over several breaths
- Ventilator delivers test breaths, then adjusts pressure and flow to deliver a minimum tidal volume

Dual Control Breath-to-Breath
- Pressure control with volume guarantee - company names
 - Pressure-Regulated Volume Control- PRVC (Maquet)
 - Volume Targeted Pressure Control- VTPC (Newport e360)
 - Volume Control Plus (VC+) (PB 840)
 - AutoFlow (Drager Evita)
 - P-CMV (Hamilton Galileo, Raphael, G-5)
 - Pressure control volume guarantee (PCV-VG) GE Engstrom

Dual Control Breath-to-Breath
- Volume guaranteed PSV
 - Maquet Servoi, Servo 300
 - Newport e360
 - Puritan Bennett 840
 - Drager Evita ventilators
 - Hamilton Galileo, Raphael, G-5
 - GE Engstrom

Maquet Servoi®

![Maquet Servoi](image_url1)

Image courtesy of Maquet Medical

FYI - Link to Maquet ventilators

Newport e360®

![Newport e360](image_url2)

Image courtesy of Newport Medical

FYI - Link to Newport products page
http://www.newportnmi.com/ProductTOC.asp
Puritan Bennett 840

![Image of Puritan Bennett 840]

FYI - Link to Drager Ventilators
http://www.draeger.us/sites/enus_us/Pages/Hospital/ProductSelector.aspx?navID=218

Drager Ventilators

Drager Evita

Drager Evita XL

Images courtesy of Drager Medical

FYI - Link to Drager Ventilators
http://www.draeger.us/sites/enus_us/Pages/Hospital/ProductSelector.aspx?navID=218

Hamilton Ventilators

Hamilton G-5

Hamilton Galileo

Images courtesy of Hamilton Medical

FYI - Link to Hamilton Ventilators
http://www.hamilton-medical.com/

GE Engstrom Carestation

- FRC measurement during ventilation - volume-oriented PEEP adjustment
- Intrathoracic pressure measurement

![Image of Intrathoracic pressure sensor]

Images courtesy of GE Healthcare

GE Engstrom Carestation

- Intrathoracic pressure measurement

![Diagram of Intrathoracic pressure measurement]

Images courtesy of GE Healthcare
GE Engstrom Carestation®

Intratracheal pressure measurement

Pressure control with volume guarantee

- Deliver minimum set TV, VE, with automatic reduction in delivery pressure

Precautions

- not for all patients
- erratic patient effort prevents ventilator logic from making appropriate adjustments and tidal volume will not be delivered.

Pressure support with volume guarantee

- Pressure support breaths with minimum tidal volume
- Breath attributes
 - patient-triggered
 - pressure-limited
 - flow-cycled
 - flow variable
 - volume guarantee (minimum)
Pressure support with volume guarantee

- **Precautions**
 - Pressure level increases to maintain TV for a patient with obstruction
 - auto-PEEP may result from patient actively attempting to exhale

Precautions

- During hyperpnea, as due to increased demand, the ventilator will reduce its support when it is most needed

Precautions

- Inappropriate expiratory trigger prolongs inspiration & may cause:
 - auto-PEEP
 - patient discomfort
 - inability to trigger breaths

Commonalities

- IBW entered
- respond to changes in mechanics
- % support adjusted
- TV determined by ventilator

Proportional assist ventilation (PAV) (TM) Puritan Bennett 840

Adaptive support ventilation (ASV) (TM) Hamilton ventilators

Weaning mode

- Support level is based on patient demand
- Ventilator adapts to changes in resistance and compliance
- Weaning proceeds by decreasing % support by ventilator
- Graphics display of WOB

FYI - Click to download article on dead space and body weight

www.rcjournal.com/contents/07.08/07.08.0885.pdf
Volume-pressure loop

- spontaneous WOB

\[\text{spontaneous breaths} \]

\[\text{WOB} \]

\[\text{Inspiration} \]

\[\text{Expiration} \]

\[\text{P}_{aw} \] cm H₂O/mbar

\[\text{VT} \] LITERS

\[\text{VT} \] LITERS

Adaptive Support Ventilation

- Not just a weaning mode
- ASV algorithm determines optimal breathing pattern (TV, f) for patient, based on:
 - estimated anatomic deadspace
 - expiratory time constant (R*C)

Adaptive Support Ventilation

- Ventilator maintains minimum minute ventilation
- Absence of patient effort- pressure control with volume guarantee
- Presence of patient effort
 - automatic reduction of mandatory breaths
 - automatic reduction of pressure support

Adaptive Support Ventilation

- Weaning proceeds by decreasing % minute volume support by ventilator

Neurally adjusted ventilatory assist (NAVA)™

- Modality developed by Maquet™
- a gastric catheter detects and transmits diaphragmatic electrical activity to the ventilator.
- ventilator uses the strength of the signal to adjust the level of support for the patient.

Tube compensation

- Provides PSV level based on tube size and inspiratory flow
 - availability
 - Drager ventilators
 - Hamilton ventilators
 - Puritan-Bennett 840
 - Engstrom Carestation

FYI - Click for article on ASV
http://www.ijccm.org/article.asp?issn=0972-5229;year=2013;volume=17;issue=1;spage=16;epage=22;aulast=Fernandez

FYI - Click to view or bookmark video about NAVA (28 min.)
http://vimeo.com/44685561

Copyright 2008 AP Jones
Tube compensation
- Provides PSV level based on tube size
 - theoretically, WOB same as if patient is extubated; but.....??
 - "electronic extubation"
 - measurement of rapid shallow breathing index on tube compensation mode

FYI - Click for article on tube compensation
http://services.aarc.org/source/DownloadDocument/DownloadDocs/05.10.0640.pdf

Adjustable Expiratory Trigger
- Purposes
 - increase synchrony for expiration
 - increase patient comfort
 - prevent auto-PEEP
 - leak compensation - especially important for uncuffed tubes (pediatrics)

Adjustable Expiratory Trigger
- Adjusted by observing:
 - patient effort- working to exhale
 - I:E ratio
 - ventilator graphics
 - Patient expiratory effort
 - Late termination
 - Inability to trigger

Adjustable Expiratory Trigger
- Ventilators with adjustable expiratory triggers:
 - Hamilton ventilators
 - Puritan Bennett 840
 - Newport e360
 - Maquet Servoi
 - Drager ventilators
 - Engstrom Carestation

Adjustable rise time
- Rise time- time required to reach PIP
- Purposes:
 - improve patient comfort
 - decrease inspiratory WOB
- Adjusted by observing:
 - patient inspiratory effort
 - ventilator graphics

Adjustable rise time
- Rise time adjustment- observe pressure waveform
- Linear or bowed upward rise in pressure after trigger on the pressure wave
- Slow rise in pressure, concave shape of the pressure wave

Copyright 2008 AP Jones
Evidence for Ventilation Modes
- Pressure control with volume guarantee - decreased PIP
- Pressure support with volume guarantee - no evidence
- Automatic tube compensation - increased tolerance of SBT

FYI - Link to article on evidence for new modes
http://www.advanceformrc.com/SharedResources/advanceforMRC/Resources/DownloadableResources/NewModes.pdf

Evidence for Ventilation Modes
- Proportional assist ventilation - better sleep; no improvement over PSV in duration of ventilation, mortality
- NAVA - no RCTs, no evidence
- APRV - improved hemodynamics; shorter duration of ventilation, ICU stay
- HFOV - no differences in duration of ventilation or mortality

Developments In Mechanical Ventilation That Will Outlast The Next Decade (Kacmarek)
- Noninvasive PPV
- Lung protective strategies
- Combined pressure-volume

Developments In Mechanical Ventilation That Will Outlast The Next Decade (Kacmarek)
- Noninvasive PPV
- Lung protective strategies
- Combined pressure-volume targeted modes
- Prone positioning
- Tracheal gas insufflation

Summary & Review
- Volume and pressure-targeted ventilation each have advantages and disadvantages
- Dual control modes developed to combine volume and pressure modes

Summary & Review
- Dual control - within breath, or breath-to-breath
- Pressure control with volume guarantee
- Pressure support with volume guarantee
Summary & Review

- Modes tailored to patient
 - Adaptive support ventilation
 - Proportional assist ventilation
 - Maquet NAVA

- Additional ventilator adjustments
 - Expiratory trigger
 - Inspiratory rise time
 - Compensation for tube resistance

- Evidence for newer modes
 - Kacmarek's ventilation strategies through the next decade

References

- Branson RD. Techniques for automated feedback control of mechanical ventilation. The clinical and management quarterly newsletter NAMDRG 2001;25(3).
- Kacmarek RM. Which developments in mechanical ventilation will outlast the next decade? http://www.chestnet.org/education/pccu/vol14/lesson1.html

END