Pathophysiology of Lung Inflammation

In The Know

Asthma Airway Pathology
- Cellular infiltrates composed of:
 - Eosinophils
 - Lymphocytes
- Epithelial damage
- Vascular permeability changes
- Airway smooth muscle hypertrophy

Blood Components
- Erythrocytes (RBC)
- Leukocytes (WBC)
 - Neutrophils (40%-75%)
 - Eosinophils (1%-6%)
 - Basophils (less than 1%)
 - Monocytes (2%-10%)
 - Lymphocytes (20%-45%)

Neutrophils
- Contain granules in the cytoplasm
- Released from marrow and migrate to extravascular tissue
- Activated by chemoattractants at the site of injury
- Ingest bacteria (phagocytosis) then release enzymes (cytotoxins)

Basophils
- Contain granules in the cytoplasm
- Migrate to extravascular tissue from marrow
- Similar to mast cells
- Phagocytic properties
- Stimulated by antigens bound to IgE

Eosinophils
- Contain granules in cytoplasm
- Migrate to extravascular tissue from marrow
- Do not ingest bacteria but are cytotoxic
Monocytes
- Larger than leukocytes
- Mature into macrophages (antigen presenting cells APC’s) once released from marrow
- Migrate to tissue (liver, lymph nodes, lungs)
- Actively phagocytic, ingest particulate matter
- Ingest, process, and present antigens (B- and T-lymphocytes)

Lymphocytes
- Two types:
 - B-cells
 - Produced in bone marrow
 - Contain immunoglobulins on their surface
 - When stimulated by cytokine IL-4 produce IgE antibodies specific to the antigen
 - T-cells
 - Produced by bone marrow but mature in the thymus
 - Take part in cell mediated response, independent of antibodies after being presented with the antigen

Lymphocytes T-Cells & NK Cells
- Two types of T-Cells:
 - T-helper
 - Secrete specialized factors (cytokines, etc.) that activate other white blood cells
 - T-killer
 - Directly kill tumor cells, viral-infected cells, and sometimes parasites
 - Natural Killer cells
 - Kill like T-Killer but need no antigen presentation
 - Activated by antigen-antibody complex

Dendritic Cells
- Extremely efficient (APC’s)
- Recently discovered
- Originate in bone marrow
- Capture antigen and take it to lymph tissue
- Bind high amounts of HIV
 - Reservoir of virus presented to T-Helper cells

Chemical Mediators
- Histamine (Vasoactive amine)
 - Stored in mast cells, leukocytes (basophils and eosinophils), and platelets
 - Release (degranulation) is stimulated by complement components C3a and C5a, and lysosomal proteins released from neutrophils
- Cysteinyl Leukotrienes
 - Synthesized from arachidonic acid, especially in neutrophils
 - Produced from the lipoxygenase pathway
 - Can cause bronchospasm, have vasoactive properties

Chemical Mediators
- Stimulate receptor cells in the airways
- Bronchoconstriction
- Broncial hyperreeractivity
- Mucous obstruction
- Edema
- Microvascular leakage
Chemical Mediators

- Lysosomal compounds:
 - Released from neutrophils
 - Cationic proteins (increase vascular permeability)
 - Neutral proteases (may activate complement)
- Prostaglandins:
 - Long chain fatty acids derived from arachidonic acid
 - Produced from cyclooxygenase pathway
 - Potentiate increase in vascular permeability caused by other compounds

- 5-hydroxytryptamine (Serotonin)
 - Vasoactive amine like histamine
 - Stored in mast cells in high concentration
 - Potent vasoconstrictor
- Lymphokines
 - Chemical messengers released by lymphocytes
 - Have vasoactive and chemotactic properties

Leukotrienes

- Produced from arachidonic acid using lipoxygenase
 - Limited to cells of lung, blood vessels, epicardium
- Slow-reacting substance (SRS)
 - Noted for prolonged smooth muscle contraction
 - SRS-A found to be LTC4, LTD4, and LTE4
- Potent constrictors of bronchial smooth muscle
 - 1000-10,000x more potent than histamine or prostaglandin
 - Probable role in asthma

Leukotriene Formation

- LTC4, LTD4, LTE4 (SRS-A)
- LTC4 & LTD4 (most potent)
 - Smooth muscle contraction, increase vascular permeability
 - LTE4 (10% as potent as LTD4)
 - All bind to receptor CysLT1
- LTB4
 - Chemotactic for neutrophils and eosinophils

Leukotriene Development Path
Cytokines

- Protein mediators synthesized by parenchymal, inflammatory cells, T-cells
 - Interleukins (IL)
 - Interferons (IFN)
 - Tumor necrosis factor (TNF)
 - IL-4 induces expressions of adhesion molecules (CAM’s) and inflammatory cells (eosinophils)
- Pro-inflammatory properties

Plasma Factors

- The plasma contains four enzymatic cascade components:
 - Complement system
 - Kinins
 - Coagulation factors
 - Fibrinolytic system
- All are inter-related
- Produce inflammatory mediators

Plasma Factors

- Complement system
- Series of serum proteins that circulate in the blood
- Cascade of enzymatic proteins activated by:
 - Tissue necrosis
 - Infection (activated by antigen-antibody complexes)
 - Products of kinin, fibrinolytic and coagulation systems

Once activated has four major functions
- Destroying bacterial invaders (creates holes in them)
- Recruiting phagocytic cells
- Opsonization
 - Facilitating ingestion of pathogens by phagocytes
 - Mediating vascular responses
- Products of complement activation:
 - C5a
 - Chemotactic for neutrophils
 - Increase vascular permeability
 - Release histamine from mast cells
 - C567
 - Chemotactic for neutrophils
 - C56789
 - Cytolytic activity
 - C4b, 2a, 3b
 - Opsonization of bacteria (facilitates phagocytosis by macrophages

Products of complement activation
- C3a
 - Similar to C5a but less active
- C567
- C56789
- C4b, 2a, 3b
Complement Pathway

Plasma Factors (Kinins)
- Kinin system (interacts with Fibrinolytic system)
 - Peptides of 9-11 amino acids
 - Bradykinin
 - The most important vascular permeability factor
 - Chemical mediator for pain
 - Activated by coagulation factor XII

Plasma Factors (Fibrinolytic)
- Fibrinolytic system (interacts with Kinin system)
 - Plasmin
 - Responsible for lysis of fibrin
 - May effect local vascular permeability
 - Chemotactic for PMN’s

Plasma Factors (Coagulation)
- Coagulation system
 - Responsible for conversion of soluble fibrinogen into fibrin (component of exudate)

Plasma Factors (Coagulation)
- Coagulation Factor XII (Hageman factor)
 - Activated by proteolytic enzymes of bacterial origin
 - Activates the coagulation, kinin, and fibrinolytic systems

Pathway
Inflammation Pathway